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The larvae of many coastal benthic invertebrates have com-
plex life cycles beginning with a pelagic larval stage lasting
from a few days to weeks. During development, larvae are pas-
sively transported by ocean currents that determine their fates
(Thorson 1950; Scheltema 1986). Studies of invertebrate larval

dispersal have been met by challenges associated with small
sizes of individuals, high mortality, and patchiness over large
spatial scales (Boicourt 1988; Garland 2000; Pineda et al.
2007). Particularly for bivalve larvae, it is difficult to perform
species-specific field studies because of an inability to accu-
rately identify early stage larvae (Garland 2000; Garland and
Zimmer 2002; Gregg 2002). Because bivalve larvae exhibit
species-specific behaviors in the field (Shanks and Brink 2006),
one cannot accurately assess transport without identifying
species. This is especially important when considering popu-
lations of commercially important species, as an understand-
ing of larval transport is necessary to address management
questions concerning species productivity and decline, shell-
fish enhancement through seeding, and habitat restoration
(Gregg 2002).

Once a bivalve larva begins shell mineralization (usually 
20 h post-fertilization), most species proceed to a straight-hinge
(veliger) stage followed by transformation to a more rounded,
umbonate (pediveliger) stage after several days (Chanley and
Andrews 1971). It is particularly difficult to distinguish species
of straight-hinged larvae by morphological features alone, but
as the larva develops, characteristic morphological changes can
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Abstract
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Larval abundance estimates for a time-series of field samples showed good correspondence with visual methods
after correction. Overall, this approach represents a cost- and time-saving alternative to molecular-based iden-
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sometimes help distinguish species or genera. Photographs of
cultured species are limited to those that can be reared in the
laboratory and matching photographs to larvae from the field
can result in misidentification (Loosanoff et al. 1951). Electron-
micrographs of the larva’s hinge structure have historically been
the standard for larval species identification (Lutz et al. 1982),
but the labor required to perform these identifications is unre-
alistic for field studies. The pros and cons of more recent
species-specific identification methods have been reviewed by
Garland and Zimmer (2002) and Hendriks et al. (2005). It has
been a challenge to develop a reliable and cost-effective solution
for larval identification to handle the large volume of samples
required for many field studies. Current successful methods
involve multiplex PCR (Hare et al. 2000; Larsen et al. 2005),
quantitative PCR (Wight et al. 2009), and fluorescent in situ
hybridization with DNA probes (Henzler et al. 2010), but each
method has specific limitations on sample volume, specificity,
and cost per sample.

Recent advances in imaging technology have allowed for
greater spatial and temporal resolution of plankton studies
through optical sampling methods (Benfield et al. 2007). In-
situ optical sampling instruments such as the Video Plankton
Recorder (Davis et al. 1992), benchtop equipment such as
FLOW-CAM (Sieracki et al. 1998), and laboratory-based scan-
ning methods such as ZOOSCAN (Grosjean et al. 2004) have
created a need for image recognition software to identify
plankton based on characteristic features that the computer
reads from each image (Davis et al. 2004). Each class of organ-
isms must have distinguishing characteristics (or features, i.e.,
shape, texture, color) for the computer to recognize and use for
training. Not every statistical classifier is optimal for analysis of
a given image set, so there can be a lengthy start-up time for
optimizing image processing techniques (Grosjean et al. 2004;
Lou et al. 2005; Gorsky et al. 2010). Furthermore, computer
image analysis is not capable of discriminating images as
exactly as humans and is generally assumed to be less accurate
than having a human expert carefully analyze microscope sam-
ples (Culverhouse et al. 2003). Ultimately, image identification
of plankton samples must balance accuracy, or how well the
system compares with traditional methods, with efficiency and
repeatability in order to handle large volumes of material.

Image-processing techniques can be used to address taxa-
specific questions of abundance, spatial distribution, and bio-
mass in zooplankton studies. Studies have demonstrated the
use of these methods for observations of real-time zooplank-
ton distribution through quantitative high-resolution maps
(Gallager et al. 1996, Davis et al. 2004), seasonal zooplankton
abundance and biomass estimates from preserved net samples
(Bell and Hopcroft 2008; Gorsky et al. 2010), phytoplankton
size and biomass (Sieracki et al. 1998), and taxa-specific phy-
toplankton distributions (Sosik and Olson 2007). More recent
studies have employed these techniques to address large-scale
biological questions, such as zooplankton biomass and spatial
distribution in the Bay of Biscay over an eight-year period

(Irigoien et al. 2009), spatial structure of zooplankton distri-
bution in relation to oceanographic variables in an upwelling
region in Chile (Manriquez et al. 2009; Manriquez et al. 2012),
and association of zooplankton taxa with water mass types on
the Western Antarctic Peninsula (Ashjian et al. 2008). As these
techniques become more tested and available, the traditional
taxonomic approach used for large-scale plankton studies
should be adapted to include automated image processing
(MacLeod et al. 2010).

The similar morphologies of veliger larvae make them less
amenable to traditional identification methods using size fea-
tures and black-and-white images (Hendriks et al. 2005), but
color images of larvae under polarized light show distinct bire-
fringence patterns (Tiwari and Gallager 2003a, 2003b). Once a
larva begins shell formation, each species uses a specific protein
matrix to control the orientation of the aragonite crystals form-
ing the shell. Mineralization continues throughout the larval
phase as the shell changes shape. Cross-polarized light and a full
wavelength compensation plate create color patterns that
reflect the crystal orientations. These color-patterns are species-
specific and can be used in pattern-recognition software (Tiwari
and Gallager 2003a, 2003b). Initial work using six species of pre-
served hatchery larvae showed accuracies between 80% to 90%
(Tiwari and Gallager 2003b). As only color patterns are used as
features, polarization techniques are insensitive to shell orien-
tation, size, and morphology (Tiwari and Gallager 2003a,
2003b), eliminating many of the ambiguities involved in differ-
entiating bivalve larvae (Perino et al. 2008).

Although hatchery-reared samples allow for definitive
measures of identification accuracy, they are likely to repre-
sent a simplified sample set relative to field-caught larvae.
Field larvae may appear different due to environmental het-
erogeneities and may contain more species than can be fea-
tured in a reference set of reared larvae. Using a reference set
that doesn’t accurately represent the field sample composition
violates classification assumptions (Provost 2000) and could
generate misclassifications, particularly false-positives (Gorsky
et al. 2010).

The objective of this work was to develop a supervised
image classification technique using shell birefringence pat-
terns to distinguish species of bivalve larvae into a repro-
ducible method that can be applied to field studies. Here we
present the first application of this polarization technology to
larval bivalves from field-collected samples. Our goal was to
evaluate and optimize the identification accuracy of this tech-
nique and compare it to other available methods for bivalve
larval identification. We employed visual identification as well
as DNA identification methods using multiplex polymerase
chain reaction (PCR) and genetic database searches (Hare et al.
2000). Finally, we present a species-specific assessment of lar-
val bivalve abundance in weekly field samples taken from
Waquoit Bay, MA, USA over a six-month period using com-
puter classifications trained with field images and compare
results to visual classifications. This research is the first sys-
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tematic step needed to generate species-specific data to better
address questions related to bivalve larval transport, dispersal,
and survival, all of which are important for restoration and
management efforts.

Materials and procedures

Our study employed four approaches for identifying larvae:
(1) hatchery rearing, (2) genetic methods using multiplex
PCR, (3) visual identification, and (4) supervised image classi-
fication. The first three approaches were necessary to set up
the supervised image classification technique (Fig. 1A).
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Fig. 1. (A) Diagram of image processing technique from sample collection to classification of unknown images. (B) Sample images from the hatchery
training set. Polarization images of larvae from four species throughout larval development with varying color patterns. Images are not to scale. 



Hatchery rearing
Reference larvae were spawned from two Cape Cod aquacul-

ture facilities between 2007 and 2010 and preserved in 80%
ethanol. Larvae of four commercially important species,
Argopecten irradians (bay scallop), Crassostrea virginica (eastern oys-
ter), Mercenaria mercenaria (quahog), and Mya arenaria (soft-shell
clam), were sampled from cultures every 1-2 d after spawning.

Images of hatchery larvae were taken using a Moticam 1000
4 megapixel camera mounted on a Zeiss IM 35 compound
microscope fitted with a polarization filter and full wave com-
pensation plate to achieve cross-polarization (Fig. 2). The opti-
cal path setup was similar to that used previously (Tiwari and
Gallager 2003a, 2003b), but omitting bleaching and using a
different wave compensation plate prohibited cross-compar-
isons with the 2003 images. Bleaching shells was not shown to
affect classification accuracy (Thompson 2011). A 12V 100W
halogen bulb was used as light source. Motic Images Plus (ver-
sion 2.0; Motic China Group) captured JPEG images with color
and exposure settings for the capture window matching the
appearance of the larvae under the microscope. All larvae were
imaged on a glass slide with coverslip in distilled water after
rinsing off any fixative. For each species, 100 larvae were
imaged from each sample to total between 500-3000 images
representing different larval stages and orientations (Fig. 1B).
Genetic methods

A multiplex PCR method targeted to identify five species of
bivalves from field samples was used for molecular identifica-
tions (Hare et al. 2000). Species targeted were M. mercenaria, A.
irradians, M. arenaria, Mulinia lateralis (little surf clam), and
Spisula solidissima (surf clam). DNA was extracted from
ethanol preserved larvae after rinsing and used in multiplex
PCR assays containing five species-specific primer pairs map-
ping to the cytochrome oxidase I (CO1) gene and a universal
18S-rRNA primer pair as a positive control. Each primer pair
amplified a different length DNA fragment. Specific details of
primer design, larval DNA extraction, and PCR assays can be
found in Hare et al. (2000). Only reactions prepared from a
master mix for which no amplification products appeared in
the negative (no DNA) control reaction were used for compar-
ison with images. Sequencing of the 18S region in reactions
that did not produce a species-specific band provided further
species identification through genetic database searches.
Visual identification

We set up reference image sets from both the hatchery
(known species) and field sample (unknown) images for com-
parison. Subsamples of 100 larvae from each field sample were
imaged using the setup described above resulting in a field set
of over 7000 images. These field images were visually classified
to species to form image groups from which we set up training
sets for the supervised image classification. We used field iden-
tification guides of Chanley and Andrews (1971) and Loosanoff
et al. (1966) for morphology and size criteria. Polarized images
from hatchery and molecularly confirmed larvae were used to
identify unknown larvae based on birefringence patterns.

Supervised image classification
This supervised image classification technique requires

three key steps after sample collection and imaging (Fig. 1A):
(1) image preprocessing to remove background image “noise,”
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Fig. 2. Diagram of optical path for polarization setup of microscope for
image acquisition. Black arrow represents path of light. 



(2) training set feature extraction and cross-validation, (3)
classification of unknown images using a support vector
machine (SVM).

Image preprocessing
Before images could be run through the classification soft-

ware, a region of interest (ROI) had to be defined and distin-
guished from its background. All image analysis routines were
run with the MATLAB software package (version R2009a;
Mathworks) and its Image Processing Toolbox (version 6.3;
Mathworks). Preprocessing was done through an automated
Canny edge routine to detect the shell’s edges, apply a binary
mask, and crop the image to the area of interest. In a few cases
where this routine failed (i.e., too much background or over-
lapping shapes with the larvae), the preprocessing was per-
formed using a manual ROI masking routine in MATLAB.

Training set feature extraction and cross-validation
Reference sets of various sizes, or “training sets,” were cre-

ated by randomly selecting hatchery or visually classified lar-
vae from each species category to train the classifier. Each
image from our training sets was run through feature extrac-
tion software implemented in MATLAB and identical to that
used in Tiwari and Gallager (2003b).

We calculated both Gabor and color-angle features to rep-
resent the texture and color of each polarized image. Gabor
fast Fourier transform were generated from the spatial domain
of Gabor wavelets from 4 scales and 90 rotations of the origi-
nal image using parameters as described in Tiwari and Gallager
(2003b). Rotation and size invariant Gabor features were cal-
culated from the magnitudes of discrete Fourier transform of
the Gabor feature matrix. This resulted in 184 values of the
mean and standard deviations for the magnitude of the trans-
form coefficients, which were used to represent the image for
each RGB (Red, Green, Blue) color channel. This achieved a
total of 184 ¥ 3 ¥ 2 = 1104 Gabor texture features. Nine color
edge and distribution angles were calculated from HSV (Hue,
Saturation, and Value) components of the image as defined in
Tiwari and Gallager (2003b) and converted to true angles.
Nine invariants of the color image matrix were included in the
feature space. A Principle Component Analysis (PCA) was run
on the Gabor features to isolate 10-40 of the most significant
features and remove redundancy and noise from the 1113
dimensional vector (Zhao et al. 2010).

We used a Support Vector Machine (SVM) classifier toolbox
for both cross-validation (CV) and classification implemented
in MATLAB (Cawley 2000; http://theoval.cmp.uea.ac.uk/svm/
toolbox/). The SVM sorted the feature data from each species,
mapped each species to a multi-dimensional space equal to
the number of features used, and created decision boundaries
for each species group. We combined an SMO (Sequential
Minimal Optimization) training algorithm with a DAG-SVM
(Directed Acyclic Graph Support Vector Machine) algorithm
to form a multi-class neural network for a one-to-one SVM
classifier. A one-to-one SVM works with multiple categories by
comparing each class to each other, and the image is identified

as the class with the highest probability of classification (Lou
et al. 2003). We used an SVM with a Gaussian Radial Basis
Function (RBF) Kernel of g = 2 and regularization parameter, C
= 70 as in Tiwari and Gallager (2003a). The SVM was chosen
because of its ability to operate in a high-dimensional feature
space and its history of use in color pattern-recognition algo-
rithms on which the feature extraction software is based
(Daugman 2001; Tiwari and Gallager 2003a, 2003b). Initial
tests of larval images with Linear Discriminate Analysis (LDA)
were not as accurate (Tiwari and Gallager unpub. data).

A leave-one-out (LOO, Fukunaga and Hummels 1989) CV
method using the SVM output was then run on every image
in the training set to ensure that it was set up to accurately
classify unknown images. The LOO method iterates through
each image in the training set, trains the SVM classifier with
every image except the current image, and uses those bound-
aries to make the decision to classify the left-out image. The
result is an accuracy based on how many images fall into the
correct category (from which the image was removed) and
how many fall into an “unknown” category. While this is
absolute for the hatchery training sets, the accuracy for the
visually classified training sets includes a portion of human
classification error, and for the purposes of this article, is
reported as “agreement.”

Classification: unknown images
Once the training set was created and the SVM was trained

and cross-validated, we could classify unknown images from
the sample set. The process works by loading images from
samples and extracting the same texture and color features as
the labeled training images. Because any unknown set may
contain new species that are indistinguishable using the fea-
tures previously defined as informative for the training set, the
entire PCA to SVM procedure is repeated for the unknowns
plus training sets. After this procedure, recognizable false pos-
itives were manually removed from classified groups to
improve accuracy.

Assessment
The performance, accuracy, and versatility of the polarized

image analysis method was assessed in four ways (Table 1): (1)
assessing optimal conditions for feature selection and training
set formation using images of hatchery-reared larvae; (2) meas-
uring error rates for genetic, visual, and computer classification
using hatchery-reared larvae; (3) using genetic methods to
identify field larvae; and (4) assessing the supervised computer
identification technique to identify species of bivalve larvae
collected in the field. Each of these tests were not previously
performed by Tiwari and Gallager (2003a, 2003b) and represent
important optimization and assessment of this method for
bivalve larval identification from field samples.
Optimizing training sets using images from hatchery-
reared larvae

We performed several iterations of training and CV using
the hatchery larvae as a model for how our method works
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under ideal conditions. This is because the larval species were
known, larvae of each species were grown under relatively
uniform hatchery conditions, and the image sets contain
equal representation of all age classes and thus birefringence
patterns for the larvae.

First, we determined the optimal number of features to
extract from images. To assess classification error with varying
number of Gabor features, we used a LOO CV analysis from a
training set of 500 images of each hatchery species (Fig. 3).
Only the principal components (features) with the highest
eigenvectors were used, and classification errors decreased as
the number of features increased from 10 to 35, but increased
with 40. The balance of error and processing time was deter-
mined to be optimal with 25 Gabor features. The highest load-
ings from each principal component were 18 red Gabor fea-
tures, 6 green Gabor features, and 1 blue Gabor feature. All
subsequent classifications were performed by creating new
feature sets with 25 PCA-transformed Gabor features and 9
color angle features, for a total feature vector of length 34.

We also determined the optimal number of images to
include in training sets by comparing classification accuracies
of different sized training sets. We created five different test
sets of 100 images from each category, randomly sampled
without replacement, to act as unknown images. From the
remaining images after each test set was sampled, we created
training sets of 100, 200, 300, and 400 images per species. A
training set of at least 100 images is necessary for this method
to encompass various sizes and orientations of larval shells for
each species. We calculated the true accuracies for each species
as the number of images that were classified into the correct
category divided by total images for that species in the test set
(100) and then averaged the values for each test set (Fig. 4A).
This was to prevent bias that may result from resampling

images for training sets (Bouckaert 2008).
The total accuracies showed general improvement with

larger training set size, however, each species behaved differ-
ently. M. arenaria had greater accuracies with more images,
whereas A. irradians and M. mercenaria did not change much,
and C. virginica got slightly worse with larger training set size.
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Table 1. List of assessment tests, training image and classification detail, and sources of error. KEY: LOO = leave-one-out cross-valida-
tion, SVM = Support Vector Machine classifier, AI = Argopecten irradians, CV = Crassostrea virginica, MA = Mya arenaria, MM = Merce-
naria mercenaria, GD = Geukensia demissa, AO = Arca sp., AS = Anomia simplex, ED = Ensis directus, MB = Macoma balthica, SS = Spisula
solidissima, UA = Unknown A. 

Assessment test Reference set Species Number of images Classification method Sources of error

Feature selection Hatchery AI, CV, MA, MM 500 per species LOO, SVM computer
Training set size Hatchery AI, CV, MA, MM 400/300/200/100/ per species Hold-out ¥ 5, SVM computer
Age classes Hatchery, ages 2,5,7 d AI, CV, MA, MM 100/species for each age class 5-fold CV, SVM computer
Computer control Hatchery AI, CV, MA, MM 500/species 5 fold CV ¥ 5, SVM computer
Visual control Hatchery AI, CV, MA, MM 398 Visual sorting human
Molecular control Hatchery AI, CV, MA, MM 20/species Multiplex PCR PCR

(Hare et al. 2000)
Field training Visually sorted AO, AS, ED*,  250/9 species, 250/ LOO, 10-fold CV, SVM human, computer
set assessment field images GD, MA,MB, 6 species, 400-500/

MM, SS, UA* 6 species, Unbal./6 species
Field data Visually sorted AO, AS, GD, 3250 balanced, LOO, SVM human, computer
classification field images MA, MB, MM 3250 unbalanced

*Species not verified by DNA.

Fig. 3. Error analysis for varying numbers of Gabor features. Total error
(as percentage of misclassified images) for hatchery species in a 500
image per species training set is shown versus number of selected vari-
ables after Principal Components Analysis on all Gabor features. Errors
were calculated as percent misclassified images in a leave-one-out cross-
validation analysis, and Principle Components with the highest eigenvec-
tors were selected. 



A repeated measures ANOVA was run to test whether there
were any significant differences in accuracies between each
training set. This test was used despite the violation of the
independence assumption due to repeating images in the
training sets (Demsar 2006), and therefore these statistical
results should be interpreted with care (Pizarro et al. 2002).
The ANOVA showed significant differences with training set
size (F3,4 = 10.89; P = 0.001), and the 100 images per category
training set was significantly different from the rest after a
Tukey HSD multiple comparison test. Thus, we suggest that
training sets with 200 images per species should provide suf-
ficient accuracy. Including more than 200 images would
essentially increase processing time with no significant gain
in overall accuracy. In training sets with higher error, more
images may be necessary to increase accuracy. In other plank-
ton image analysis, a visually sorted training set with 200-300
images per category was recommended with 60% accuracy
(Gorsky et al. 2010), but in other analyses acceptable training
sets have contained 100 images or less (Bell and Hopcroft
2008; Gislason and Silva 2009; Fernandes et al. 2009).

The final element that we tested was classifier performance
on different age classes of larvae, because each species cate-
gory contains combinations of images representing different
larval stages with different birefringence patterns. We made
training sets of images from each species for days 2, 5, and 7,
as these ages were present in samples of all four species. Each
category contained approximately 100 images per species. A 5-
fold cross validation was run on each training set. This works
by splitting the images into five equal test groups and training
the SVM with the remaining images for each iteration or
‘fold.’ Accuracies for each class were determined the same way
as for the training set size tests (4B).

Results of these tests show this method was highly accurate
across age groups and was perfect for day 7 larvae. A nonpara-
metric Friedman’s test was performed on the accuracies for
total larvae across folds due to unequal variances and con-
firmed results were not significant between age groups (c2,5 =
4.77, P = 0.092). It should be noted that this statistical test
does not exactly conform to those presented for model selec-
tion in the literature (Vazquez et al. 2001; Pizarro et al. 2002).
Those examples performed analyses on test data from the
same source, and our test data were composed of different
images across folds for each training set. We conclude that the
classifier does not seem to favor one size class over another,
but we recommend including as many different size classes as
possible within training sets to encompass the changing shell
birefringence patterns that occur with growth, especially if lar-
val size distribution is not known a priori. With all age classes
included in a training set, CV accuracies were slightly lower at
92% to 96% of all species because images within each class are
less homogenous (Thompson 2011). In other plankton imag-
ing methods, copepods had different error rates between size
classes and were found to be better classified if separated by
size (Bell and Hopcroft 2008).
Measuring error rates for genetic identification, visual sorting,
and computer classification using hatchery-reared larvae

To test the error for the genetic method, DNA was extracted
from 20 hatchery larvae of A. irradians, M. mercenaria, and M.
arenaria and amplified using the multiplex PCR method
described earlier. No false positives (the case of a wrong CO1
band amplification) were reported for the hatchery-reared lar-
vae, but 15% to 35% of the samples were false negatives (the
case of an 18S band, but no CO1 band when it was expected,
Table 2), resulting in accuracies between 65% to 85%. This
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Fig. 4. Accuracy test for hatchery training set with (A) size of training categories and (B) age of larvae. (A) Percent accuracy and standard deviations for
classifying 100 test images of each hatchery species (repeated 5-fold with no replacement) with training sets of 100, 200, 300 and 400 images per species
category. (B) Accuracies and standard deviations from 5-fold cross validation of training sets containing 100 images of 2, 5, and 7 day old larvae for each
hatchery species. Accuracies are the percentage of test images classified correctly (true positives) and then averaged across folds. Accuracies are shown
for individual species and combined for the full training set. AI = Argopecten irradians, CV = Crassostrea virginica, MA = Mya arenaria, MM = Mercenaria
mercenaria. 



indicates that the multiplex method by itself is not always
informative for species-specific identifications based on CO1
results if proper amplification does not occur.

To test accuracies for visual classification, we had an outside
assistant randomly select 100 images from each of the four
hatchery species while maintaining even age class representa-
tion. The four image groups were then randomized across
species and renamed to make a double-blind test. Each group
was then visually classified to species by CMT. Results for the
visual classifications produced accuracies ranging from 85% to
100% for each species, with overall accuracy of 92% (Table 2).
In visually classifying phytoplankton images, Culverhouse et
al. (2003) showed that human performance can vary between
67% to 83%, which alone could introduce substantial variabil-
ity into a visually classified training set. Sorting accuracies are
highest for species like C. virginica that have distinct mor-
phologies, and these accuracies represent a minimum estimate
for human sorting error as we only performed this test on four
species when all possible categories were known.

We used the average accuracies from the 400 images per
species training sets on the five test set splits from the analy-
sis in section 1 (Fig. 4A) as our test for computer classification
accuracy. This test was equivalent to a 5-fold CV, which gives
a less biased estimate for classifier accuracy (Bengio and
Grandvalet 2004) and is comparable to the visual and molec-
ular tests. The classification accuracies for these “unknown”
images ranged from 98-99.8% for each age group (Table 2),
thus demonstrating strong performance of the classifier using
error-free training sets and unknown samples with low diver-
sity. Based on overall accuracies, the computer-based classifi-
cation method was the most accurate of the three for the
hatchery larvae.
Genetic identification of field larvae

The multiplex PCR method described above was applied to
larvae collected in the field to validate our visual identifica-
tions of field larvae. Live (unpreserved) plankton samples were
collected from Waquoit Bay, a National Estuarine Research
Reserve site on the south shore of Cape Cod, MA, on three
dates in June and July 2008 and five dates from May-Septem-

ber 2009. Individual larvae were isolated and placed into sep-
arate wells in 1.5 mL 24-well glass-bottom plates to culture in
the laboratory. A total of 24 larvae were isolated from three
sites in 2008 and four sites in 2009. Every 3 d, larvae were fed
algae and imaged live on the polarization microscope. This
resulted in a series of images for each larva depicting morpho-
logical changes over 12 d (our expected time to metamorpho-
sis for most species) to compare to the molecular IDs. Larvae
that survived were washed into 8 mL vials and preserved in
70% ethanol for molecular analysis.

A total of 31 larvae from 2008 and 50 larvae from 2009
were analyzed for a combined total of 81 samples corre-
sponding to 355 images (Table 3). About half of the field
PCR samples only amplified at the 18S locus, and those reac-
tions were re-amplified with only the 18S primers. Sequenc-
ing this 430 base-pair band provided an alternative means
of identifying field larvae that were not targeted by multi-
plex CO1 primers, as 18S can be diagnostic for some bivalve
families and genera (Bell and Grassle 1998). This step was
not performed in the above test with the hatchery species
but may have led to increased accuracy for that method by
eliminating the false negatives resulting from no CO1
amplification (Table 2). Successful PCR products from the
18S re-amplification were purified using the QIAquick PCR
Purification kit (Qiagen) and used in one-eighth format
sequencing reactions in 96-well plates using Big Dye termi-
nators (version 3, Perkin-Elmer). Samples were purified by
isopropanol precipitation and sequenced bi-directionally on
an ABI 3700 Capillary Sequencer. Sequences were edited in
Sequencher 4.8 (Gene Codes Corporation Inc.) and com-
pared with the GenBank universal database for species iden-
tification using BLAST searches (National Center for
Biotechnology Information database). A few sequences that
did not match with species located in the Cape Cod region
were assumed to be from species not represented in Gen-
Bank and left out of further analysis.

To verify that our 18S DNA sequence identifications from
the BLAST searches correctly corresponded to known Cape
Cod species, we extracted DNA from five adult bivalve species
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Table 2. Comparisons of visual sorting, molecular identification, and computer image analysis to identify hatchery larvae. Visual sort-
ing was performed by a double-blind classification test, the computer test was performed using a 5-fold cross-validation technique
(equivalent to the 400 image/species training set test in Fig. 4), and the multiplex PCR was performed using the protocol of Hare et al.
(2000). Accuracies are defined as follows—visual test: the number of images from each species sorted correctly, divided by the total
number of images from each species; computer test: the number of true positive classifications divided by the total images in each
species category and averaged for each fold; molecular method: the number of correct species-specific amplifications divided by total
DNA amplifications from the 18S primer for each species. Only three of four species were analyzed using the molecular method as no
primers for Crassostrea virginica were used. Total = total images classified, SD = standard deviation of accuracies across species categories.
(AI = Argopecten irradians, CV = Crassostrea virginica, MA = Mya arenaria, MM = Mercenaria mercenaria). 

AI CV MA MM Total Accuracy SD

Visual 93.6% 100.0% 85.1% 91.0% 398 92.7% 6.2%
Computer 98.0% 98.6% 98.0% 99.8% 1200 98.6% 0.8%
PCR 65.0% n/a 85.0% 70.0% 60 73.3% 10.4%



to compare with our larval sequences (for analytical methods,
see Thompson 2011). Based on the sequence divergence for
different bivalve families for this region of the gene (Bell and
Grassle 1998), we can conclude that these identifications
using the 18S rRNA are accurate and any disagreement
between the image and the sequence identification would
thus be a result of human misclassification or error in sample
preparation. We also used our molecularly identified field
images of larvae to compare the computer and molecular
methods (Web Appendix A, Table A1). Overall, the molecular
method enabled us to get positive identifications on field lar-
vae from several species that had corresponding images
throughout the larval period. This helped us reduce classifica-
tion error for our visually sorted field training sets.
Assessing the supervised computer identification technique
to identify species of bivalve larvae collected in the field

The final assessment was testing classifier performance on
unknown field samples using training sets based on visually
sorted images of field larvae (referred to as ‘visually sorted
training sets’). We tested training set size and class numbers,
balanced and unbalanced categories within training sets, and
compared computer and manual classifications in a larval
concentration time series for four species.

Sample collection and training set creation
Samples were taken at four locations throughout Waquoit

Bay on a weekly basis from May–Oct 2009. Volumes of 100-
200 L were collected in a 53 µm screen and preserved in 4%
buffered formalin. Samples were processed by counting total
bivalve larvae using a dissecting microscope and imaging a
subset on the polarized microscope. See Thompson (2011) for
more details on the field sampling procedure.

We determined the hatchery training set would not be an
accurate representation of the larvae in our samples and would
lead to a disproportionate amount of false positives. We
expected the classification accuracies of the visually sorted
training set to be lower than our hatchery training set because
1) these images were manually sorted and thus subject to

human error and bias, 2) the quality and appearance of field-
preserved larvae in images is slightly less than those from the
hatcheries because of fungal and other particulate matter that
sometimes clouded the image of the shell, and 3) not all
growth stages would be equally represented due to higher lar-
val mortalities seen in the field. Of the species in the hatchery
training set, only M. arenaria and M. mercenaria were present in
large quantities in the field samples, and A. irradians and C. vir-
ginica composed only about 2% of the total images. Initial clas-
sifications of field images using the hatchery training set falsely
classified all images as either A. irradians or M. mercenaria.

Our visually sorted training sets consisted of good quality
images of species that were most abundant in the field sam-
ples based on the visual identification method. The true abil-
ity of a classifier to provide proper estimates of community
composition relies on how accurately it represents the sample
to be analyzed (Embleton et al. 2003; Bell and Hopcroft 2008).
Groups we could not identify with certainty were left out of
the training sets, as these showed poor CV results. We created
four training sets to compare number of categories, number of
images, and whether image numbers were even or unbal-
anced, with the unbalanced training image numbers propor-
tional to each species’ abundance in the field samples. For
class selection in plankton identification methods, one must
consider the tradeoff between incorporating high taxonomic
resolution and achieving highest accuracies, as well as the
manual labor it takes to establish larger sets (Gislason and
Silva 2009).

Training set size and number of classes
We conducted several tests on field images to determine the

appropriate number of images and species classes to include.
We used both LOO and a 10-fold CV and employed a cor-
rected resampled t test similar to that in Nadeau and Bengio
(2003) and Bouckaert and Frank (2004) to test for significance.
This is different from the corrected paired t test reported in the
above works, but it includes the same variance correction nec-
essary due to the random partitioning with the CV procedure.
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Table 3.Multiplex PCR and 18S sequencing identifications for larvae from live field samples of 2008 and 2009. Eighty-one larvae were
used in this analysis, corresponding to 360 images. About half of the samples were re-amplified for 18S sequencing. Total identified from
the multiplex and sequencing are shown in the bottom rows. 

Samples Images Samples Images
2008 2009 2008 2009 Totals Totals

Guekensia demissa 4 22 19 92 26 111
Macoma balthica 1 0 5 0 1 5
Mercenaria mercenaria 22 1 87 5 23 92
Mya arenaria 3 23 14 114 26 128
Petricola pholadiformis 0 1 0 5 1 5
Spisula solidissima 0 4 0 20 4 20

Total CO1 Multiplex 20 23 82 113 43 195
Total 18S Sequencing 11 27 43 122 38 165

Total amplified 31 50 125 235 81 360

http://aslo.org/lomethods/free/2012/0538a.pdf


A paired t test was not appropriate in this instance as each fold
in our CV was subsampled from a different training set. Addi-
tionally, each calculation is not completely independent as
many images were resampled between training sets. Due to
this apparent violation, the statistics reported in these next
sections should again be interpreted with care.

We compared a small training set with 250 images for each
of nine species (representing 83% of all larvae) to a small train-
ing set with 250 images of six species representing 71% of the
total larval abundance (Table 4). The six category training set
was better at classifying larvae than the nine category training
set (t = 2.41, df = 20, P = 0.027), with agreements between
individual species all above 50% and an overall agreement of
70.8% compared to 65.6%. Thus, a gain of an extra 12% of
species resolution by using the nine-category training set
results in a 5% decline in classification accuracy, which may
be acceptable for some cases. Increasing the number of cate-
gories in our training sets can make identifications more diffi-
cult as the decision boundaries between species categories are
more likely to overlap. Going from six to nine categories
increased the chances for misclassification to another species
by about 10%. Highest accuracies are often observed with
fewer categories (Fernandes et al. 2009).

Next we compared our small six-species training set of 250
images per species to a large six-species training set with 500
images per species (Table 4). Visually sorted images are more
sensitive to training set size than our hatchery training set. This
comparison was not significant at our a level of 0.05 (t = 2.04,
df = 20, P = 0.056), but the low P value suggests a larger training
set could be significantly better in some cases. Doubling the

training set size increased overall agreements by 4% with indi-
vidual species agreements improving by as much as 9%.

Overall, these training set results suggest classification
accuracy increases with increasing number of training images,
but can decrease as the number of categories increases. This
result has been demonstrated in other plankton image pro-
cessing methods (Davis et al. 2004; Grosjean et al. 2004).
Agreement with visual classifications was lower than the
hatchery training sets as expected, although size of the cate-
gories still did not significantly affect accuracy. Sorting field
images presents more challenges as field samples contain
mostly smaller, straight-hinged veligers. Not only are these lar-
vae difficult to classify, but they could also bias the classifier
by overtraining it with smaller larvae.

Balanced versus unbalanced training sets
We tested whether a training set that better reflected the

distribution of our samples would have better accuracy. A
common assumption of decision algorithms is that the classi-
fier will operate on data drawn from the same distribution as
the training sets (Provost 2000; Lin et al. 2002). Since creating
the previous training sets involved balancing the training sets
so each category contained equal membership, we may have
violated this assumption. In some cases, rebalancing a training
set by over- or under- sampling categories can improve train-
ing accuracy (Japkowitz and Stephen 2002; Sun et al. 2007). In
some cases, Support Vector Machines have been shown to be
resistant to some levels of imbalance, and over- or undersam-
pling either does not help or hurts performance (Japkowitz
and Stephen 2002; Akbani et al. 2004). To test this assump-
tion, we created an unbalanced training set with the same
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Table 4. Results of field training set assessments for varying numbers of species classes and number of images per class. Leave-one-
out cross-validations were made for four training sets: a small training set (250 images per category) with nine species, a small training
set with six species, a large training set (400-500 images per category) with six species, and a large training set with six species but
unequal numbers per category. Total agreement was determined from the total images and false negatives summed over each category.
Highest percentage agreement for each species is shown in bold. KEY: No. = number of images, FN = false negative, AG = percent agree-
ment (1-FN/No. Images), AI = Argopecten irradians, CV = Crassostrea virginica, MA = Mya arenaria, MM = Mercenaria mercenaria, GD =
Geukensia demissa, AO = Arca sp., AS = Anomia simplex, ED = Ensis directus, MB = Macoma balthica, SS = Spisula solidissima, UA =
Unknown A. 

small/9 species small/6 species large/6 species unbal./6 species

Species No. FN AG No. FN AG No. FN AG No. FN AG

AO 250 79 68.4% 250 54 78.4% 427 121 71.6% 261 96 63.2%
AS 250 53 78.8% 250 44 82.4% 500 58 88.4% 358 65 81.8%
ED* 250 88 64.8%
GD 250 59 76.4% 250 45 82.0% 500 79 84.2% 531 75 85.9%
MA 250 111 55.6% 250 89 64.4% 500 153 69.4% 914 110 85.7%
MB 250 104 58.4% 250 90 64.0% 500 152 69.6% 442 155 64.9%
MM 250 117 53.2% 250 116 53.6% 500 186 62.8% 421 209 50.4%
SS 250 130 48.0%
UA* 250 33 86.8%
Total 2250 774 65.6% 1500 438 70.8% 2927 749 74.4% 2927 710 75.7%
*Larvae not confirmed by DNA.



total images as the 6-category training set, but with category
sizes proportional to each species’ abundance in the visually
sorted images.

In our approach to balance the training set, only some cat-
egories showed improvement (Table 4). Neither balanced or
unbalanced performed significantly better (t = 0.039, df = 20,
P = 0.955). The training set that performed the best for each
species was always the one that contained more images. With
unequal classes, SVMs will favor those with more examples
(Lou et al. 2003). There are other algorithm-level approaches
to this problem that could be explored, such as adjusting the
cost function or incorporating a Random Forest algorithm,
which is more equipped to handle unbalanced data (Lin et al.
2002; Tao et al. 2005; Eitrich and Lang 2006; Sun et al. 2007),
but these are beyond the scope of this current study.

We then tested both these training sets on a set of field lar-
vae to determine if a balanced or unbalanced training scheme
had better agreement with unknown images. We chose images
from one sampling site in the middle of Waquoit Bay as
unknowns. Because it is important to represent all types of
images in a training set (Gorsky et al. 2010), we added an
“other” category composed of 322 images of rarer species that
were not represented in the training sets. Although this is a
common method for eliminating some false positive classifica-
tions (Davis et al. 2004), it can also result in lower classification
accuracies between species categories (Thompson 2011). Con-
fusion matrices (CMs) from classifications of this field set for
the balanced and unbalanced training sets are shown in
Table 5. Overall agreements were similar for both training sets
at 63.5% and 64%, however, the highest agreements for five of
seven categories were seen with the unbalanced training set.
The choice of the best training can be subject to needs and pur-
poses of a particular study (Gislason and Silva 2009). Despite
the unbalanced set having higher agreement with most cate-
gories, we found the balanced training had higher or similar
agreements for the target species in our field study (Thompson
2011). In particular, M. mercenaria, a commercially important
clam, had only 50% agreement in the unbalanced set com-
pared with 78% agreement in the balanced set. This species was
particularly sensitive to training set size.

Classification agreements with time-series
We compared classification results for two species with

high classification accuracies (>80%, Anomia simplex or jingle
clam and G. demissa), and two species with lower accuracies
(<80% M. arenaria and M. mercenaria) as a time-series of total
larval concentration as estimated from species’ abundance in
100 image subsamples (Fig. 5). We compared our visual classi-
fications with the supervised image classification results using
the balanced training set and the same computer results after
a final manual correction by removing false positive images.
This is a common method of improving agreements (Davis et
al. 2004; Bell and Hopcroft 2008; Gorsky et al. 2010). Because
the computer software does not use size or shape as a distin-
guishing feature, many false-positive images have distinct

morphologies from the target species and can be removed
manually. This correction procedure works well because mor-
phology (i.e., size, shape of umbo) is a much better criterion
for excluding nontarget species than it is for positively identi-
fying a species (Perino et al. 2008). Any larvae removed man-
ually were not re-sorted into other categories.

Overall, our supervised classification method was able to
capture seasonal trends in larval abundance of our four target
species. The time-series for A. simplex and G. demissa show
strong correspondence between computer and visual classifica-
tion (Fig. 5A, B). For M. arenaria and M. mercenaria, correspon-
dence was not as strong (Fig. 5C, D), possibly a result of mis-
classifications between the two species (Table 5). Thus, 80%
agreement or higher should be strived for when evaluating field
training sets to estimate trends in species abundance. False pos-
itive classifications for M. arenaria that occurred during a peak
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Table 5. Confusion matrix comparing visual and computer clas-
sifications for the balanced and unbalanced 6 category training
sets classifying unknown field larvae. Results of the visually classi-
fied species are summed up in the rows, whereas results of the
computer identifications are summed up in the columns. Diago-
nals correspond to agreements. Cell colors represent percentages
of visually classified larvae classified into each category by the
computer (dark red = 75% to 100%, red = 25% to 75%, orange
= 10% to 25%, beige = > 0% to 10%). PA = percent agreement
or how many larvae were classified the same by both methods
(true positives), AO = Anadara sp., AS = Anomia simplex, GD =
Geukensia demissa, MA = Mya arenaria, MB = Macoma balthica,
MM = Mercenaria mercenaria. 



period of larval abundance resulted in a significant overestima-
tion of abundance (Fig. 5C), although manual correction was
able to resolve this error. For M. mercenaria, overestimation of
abundance by the computer and manually corrected methods
in August was small relative to the range of larval concentration
for the full series (Fig. 5D), but it was in excess of 100% for the
uncorrected images, and up to 76% for the corrected images.
This could be significant error if high-frequency samples were
taken during this period, as trends may be missed. In a shorter-
term study, one should focus a training set on species abundant
at the time period of interest. For longer time-series, it may be
helpful to change training sets based on species composition at
a given period (Gorsky et al. 2010).

We tested the agreement between visual identifications
counts and manually validated computer classifications using
the Bland-Altman method. This method compares agreement
between two methods of measurement subject to error by
comparing the residuals of both estimates (Bland and Altman
1986). Plots of residuals show the relationship between the
mean of both estimates and the difference observed for each
sample (Fig. 6). A perfect correspondence would have points
falling on the y = 0 line. Most samples fell within 95% confi-
dence limits for estimates. A slight downward slope for some
species indicates the computer may underestimate large sam-
ple sizes. Confidence limits were widest for M. arenaria (Fig.
6C), indicating that this species has the weakest agreement in
estimates. The narrowest limits were observed for A. simplex
and G. demissa. Most estimates differed by less than 10% of

the sample. Disparities between training sets and preserved
samples have been observed in other plankton identification
studies and were attributed to lack of representation in the
training sets, human error, presence of false positives, and low
numbers of training images (Embleton et al. 2003; Grosjean et
al. 2004; Bell and Hopcroft 2008; Gislason and Silva 2009).
Although no supervised image analysis method is devoid of
error, this polarized image classification method shows poten-
tial for estimating species abundance of bivalve larvae in field
samples.

Discussion
Our goal was to convert an image processing technique

using shell birefringence patterns to distinguish species of
bivalve larvae into a reproducible method that can be applied
to field studies. The true strength of this method lies in its
ability to inexpensively and accurately handle large amounts
of samples in a short amount of time. This method works best
when known or genetically verified larvae are used to create
the training sets to eliminate human misclassification error.
The assessment tests confirmed that the classifier performs
well on training sets as small as 100 images per species and is
consistent at identifying larvae of all ages and morphologies.
Using training sets created from sorted field images introduces
more error, but this step may be necessary to achieve the best
results for field studies. We showed that a few simple correc-
tion methods can achieve results consistent with visual iden-
tification of larval images but with less overall effort.
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Fig. 5. Time-series of four species’ concentrations classified by visual and supervised image classification methods. Samples were collected from a site
in Waquoit Bay, MA from May-October 2009. Concentrations were calculated from the total number of bivalve larvae in each sample multiplied by the
percentage of each species in a subsample classified by each method. Black solid line corresponds to visual classifications, and the gray and light blue
dashed lines correspond to computer and manually corrected computer classifications, respectively. The balanced training set with 6 species and one
“other” category was used for computer classifications. (A) Anomia simplex (AS), (B) Geukensia demissa (GD), (C) Mya arenaria (MA), and (D) Mercenaria
mercenaria (MM). 



When compared with the accuracies of other methods of
automated plankton identification, these results fall in the
middle. For our hatchery training sets, our accuracies fall
under the high end of image analysis capabilities (with up to
100% accuracy), but for our field training sets our accuracies
are lower, but still acceptable (62% to 88% for the large six
species field training set). The video plankton recorder group
found that their plankton classification method had higher
accuracies for more abundant taxa and lower accuracies for
rare taxa, with an overall accuracy range of 45% to 91%
(Davis et al. 2004), which was later improved with a dual-
classification method (Hu and Davis 2006). Plankton recog-
nition software for the SIPPER II underwater camera was
improved from 77% to 90% by adding an active-learning
approach with the SVM (Lou et al. 2005). ZooScan users
found accuracy was highest for a simplified approach using
8 groups and a random-forest classification method (83.9%)
and were able to improve total accuracy after manually
reclassifying “suspect” images identified by the computer
and merging categories of similar image types (Grosjean et
al. 2004; Fernandes et al. 2009; Gorsky et al. 2010). Phyto-
plankton are traditionally difficult to identify, but auto-
mated classification for the in-situ imaging flow cytometer,
FlowCytobot, achieved between 68% to 99% accuracy
among 22 categories (Sosik and Olson 2007). The DiCANN

machine-learning system for dinoflagellates categorized six
species with accuracies ranging between 41% to 100% (Cul-
verhouse et al. 2003). Our system has a more limited set of
reference images available as compared to some of these
methods, as each image had to be manually captured on the
microscope. In the future, automation of this process may
allow for collection of a greater number of images and the
ability to further increase accuracy through active learning
and error correction.

We compared our supervised image classification software
to a multiplex PCR method. Molecular methods are com-
monly used to identify species for which distinguishing mor-
phological features are absent. As this method is based on
DNA, it gave us a higher level of certainty for many of our
field identifications, however, this method was more time
consuming and expensive than the image analysis method,
which limited the number of larvae we could test. Sequencing
adult DNA and measuring sequence divergences confirmed
our identifications of four species, but for some rarer species
that are not in GenBank, false positive BLAST searches can
occur. In addition, larval DNA can be difficult to extract from
preserved samples (Larsen et al. 2005). Our 7000 images of
field larvae were only a subsample of the total field larvae col-
lected, and performing PCR on this quantity of larvae would
be daunting.
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Fig. 6. Bland-Altman plots of residuals for the classification with manual correction. The difference between the number of computer classified and visu-
ally classified images of each species are plotted against the mean value of both estimates for (A) Anomia simplex (AS), (B) Geukensia demissa (GD), (C)
Mya arenaria (MA), and (D) Mercenaria mercenaria (MM). Mean difference (dark line) and 95% confidence intervals (light lines) for estimates are shown
for each species. A perfect correspondence would have all points on the y = 0 line. 



The ultimate goal of automated and semi-automated image
analysis is to produce useful measures of species abundance,
biomass and size for ecological purposes (Gorsky et al. 2010).
Our proof-of-concept application involved a series of weekly
plankton samples taken from Waquoit Bay, MA in the summer
of 2009 (Thompson 2011). Each of the four species had differ-
ent periods of abundance throughout the time series, and
species-specific data such as these can be useful to identify
spawns, uncover transport patterns, and track larval distribu-
tion and survival over time. Further applications using this
method include studies of larval transport patterns in Waquoit
Bay (Thompson 2011). Additional applications for this
method could involve relating larval supply to juvenile and
adult recruitment, revisiting information from archived sam-
ples, identifying larvae to analyze gene frequency patterns,
and validating transport models with information on species-
specific distributions.

The polarization method can be easily adapted for use in
other geographical areas, requiring only a polarization micro-
scope with digital camera, computer with at least 2 GB of
RAM, and software package for MATLAB. Many molecular-
based methods require significant start-up for including a new
species. Primer or antibody design both require significant
knowledge, data collection, cost, and time to perform. Ideally,
our image-analysis method involves imaging a collection of
hatchery reared larvae, but if this is not possible, a field-iden-
tified training set may suffice. Thus this method could poten-
tially be applied to bivalve larval samples from any location
where they could be imaged using polarization as the charac-
teristics of shell mineralization for all bivalves are species-spe-
cific (Gallager et al. 1988). Preliminary studies of polarized
image analysis on six larval bivalves from the Chesapeake Bay
have showed promising results for identification (J. Goodwin
unpub. data). We have yet to analyze birefringence patterns
for closely related species (ie, the same genus), but previous
comparison of the bay scallop, A. irradians, and sea scallop,
Placopecten magellanicus showed distinctive shell birefringence
patterns (Tiwari and Gallager 2003a).

Overall, we conclude that a minor sacrifice to accuracy
biased by human sorting is worth the ability to handle a large
amount of field samples. Automation of image collection
could enable larger spatial and temporal coverage than by any
published bivalve larval identification method to date by
eliminating time-consuming sample processing. Currently,
few species-specific field studies of bivalve larvae exist, which
limits our understanding of their larval ecology compared
with other larval groups. The ability to estimate species-spe-
cific abundance from studies with large spatial and temporal
coverage in relatively short time periods will greatly increase
our understanding of bivalve larvae abundance, distribution,
transport, and how species might be responding to climate
change. This will have lasting implications in the fields of lar-
val ecology, biological-physical processes, and shellfish
restoration and management.

Comments and recommendations

Our method presents a versatile and cost-effective alterna-
tive for bivalve larval species identification that compares well
with other methods for bivalve larval identification and image
analysis techniques for plankton. A main drawback to this
method is that it is unknown as to how much variability is
present in shell polarization patterns due to environmental
conditions that could affect growth and mineralization.
Bleaching the samples, which removes tissue and cleans
shells, may remove some variability but inhibits DNA analysis
(Thompson 2011). Microscope settings may also affect these
patterns, which could affect the performance of the classifier
if they are not kept standard. This method is similar to that of
ZooScan and ZooProcess as it doesn¢t require a specific instru-
ment to sample images, and thus image quality and type may
differ between users (Grosjean et al. 2004; Gorsky et al. 2010).
Differences between training and sample images may lead to
weaker classifications (Bell and Hopcroft 2008), and many
software identifications are sensitive to image quality and illu-
mination (Sieracki et al. 1998). Because our image collections
spanned several months to years, we suspect that variations in
microscope settings over time may have affected color pat-
terns. Our trials found that training sets cannot be used to
classify images taken with different microscope settings unless
those images are also represented in a training set.

Another issue with the method we used is that training sets
must accurately represent the species composition of the sam-
ple set, or many false-positive classifications will occur. Based
on our results, training sets should contain more abundant
species that together represent at least 50% of the entire sam-
ple composition. Samples that contain large numbers of dif-
ferent species may be difficult to use due to the reduced clas-
sifier performance with more categories. If species
composition of the field samples is not known a priori, it may
be difficult to set up a training set using known, lab-reared
species. Sorting field larvae can add more error to human clas-
sification which is then reflected in classifier performance.

We recommend that further applications of this method
take careful examination of species composition of each sam-
ple to create a training set that accurately represents the sam-
ple to reduce error. If keys or cultured individuals are not avail-
able, genetic information can provide a reasonable
background for some species identifications. If a known train-
ing set cannot be established to accurately represent field lar-
vae, we recommend the following protocol when creating a
field-training set:

1. Classify 1000 randomly selected images to the most
accurate number of species categories (based on genetics and
key information, or preferably cultured individuals).

2. Evaluate which species are most abundant, based on
these categories (at least 50% of the entire sample).

3. From the rest of the images (leaving out the ones that
were classified), create training sets, starting at 200 images per
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category, representing different sizes or morphologies of the
species.

4. Evaluate accuracy using these training sets to classify the
visually sorted images. Compare to the visual sorted images
and adjust species categories and/or number of images per cat-
egory until the best agreement is reached.

5. Once the training set is optimized, use it to classify all
images from the sample set.

For our field image classifications, it was necessary to add a
category for images not represented in training sets and per-
form manual corrections to achieve better correspondence
with our visual counts (Thompson 2011). We recommend this
if initial agreement of both methods shows many false-posi-
tives with unlabeled images, although this may increase man-
ual-processing efforts. More sophisticated methods of feature
selection (Lou et al. 2003; Sosik and Olson 2007), dual-classifi-
cation (Hu and Davis 2006), or active-learning approaches for
classifiers (Lou et al. 2005) may help with misclassifications
between species categories. Other classifiers such as the Ran-
dom Forest, which has demonstrated to be superior to SVMs in
cases with many zooplankton categories and unbalanced data
(Grosjean et al. 2004; Gislason and Silva 2009), could also be
investigated, but this classifier has no record of performance on
color images of plankton. We found that our simple correction
methods provided sufficient agreement to our visual counts
when considering the error present in both methods.

The shell birefringence method has been applied to a field
transport study of bivalve larvae on Cape Cod, but it can be
applied to other environments. Our image analysis method
can be applied from both manually extracted images (as in
this study) or from optically sampled images from a machine
(future studies). The next step for this method is to integrate
it into an automated image collection and analysis routine.
The Larval Identification and Hydrographic Data Telemetry
System (or LIHDAT) is being tested in laboratory settings for
analysis of bivalve larvae from plankton samples (Gallager and
Tiwari 2008) with the goal of being field-operational. In addi-
tion, this software could be appended to other image analysis
systems to identify polarized color images of bivalve larvae.
The requirements for expanding this method to other envi-
ronments are minimal, and the software is available by con-
tacting S. Gallager.
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