136 research outputs found

    The expanding roles of the Sda/Cad carbohydrate antigen and its cognate glycosyltransferase B4GALNT2

    Get PDF
    Background The histo-blood group antigens are carbohydrate structures present in tissues and body fluids, which contribute to the definition of the individual immunophenotype. One of these, the Sda antigen, is expressed on the surface of erythrocytes and in secretions of the vast majority of the Caucasians and other ethnic groups. Scope of review We describe the multiple and unsuspected aspects of the biology of the Sda antigen and its biosynthetic enzyme \u3b21,4-N-acetylgalactosaminyltransferase 2 (B4GALNT2) in various physiological and pathological settings. Major conclusions The immunodominant sugar of the Sda antigen is a \u3b21,4-linked N-acetylgalactosamine (GalNAc). Its cognate glycosyltransferase B4GALNT2 displays a restricted pattern of tissue expression, is regulated by unknown mechanisms - including promoter methylation, and encodes at least two different proteins, one of which with an unconventionally long cytoplasmic portion. In different settings, the Sda antigen plays multiple and unsuspected roles. 1) In colon cancer, its dramatic down-regulation plays a potential role in the overexpression of sialyl Lewis antigens, increasing metastasis formation. 2) It is involved in the lytic function of murine cytotoxic T lymphocytes. 3) It prevents the development of muscular dystrophy in various dystrophic murine models, when overexpressed in muscular fibers. 4) It regulates the circulating half-life of the von Willebrand factor (vWf), determining the onset of a bleeding disorder in a murine model. General significance The expression of the Sda antigen has a wide impact on the physiology and the pathology of different biological systems

    ST3Gal.I sialyltransferase relevance in bladder cancer tissues and cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The T antigen is a tumor-associated structure whose sialylated form (the sialyl-T antigen) involves the altered expression of sialyltransferases and has been related with worse prognosis. Since little or no information is available on this subject, we investigated the regulation of the sialyltransferases, able to sialylate the T antigen, in bladder cancer progression.</p> <p>Methods</p> <p>Matched samples of urothelium and tumor tissue, and four bladder cancer cell lines were screened for: <it>ST3Gal.I</it>, <it>ST3Gal.II </it>and <it>ST3Gal.IV </it>mRNA level by real-time PCR. Sialyl-T antigen was detected by dot blot and flow cytometry using peanut lectin. Sialyltransferase activity was measured against the T antigen in the cell lines.</p> <p>Results</p> <p>In nonmuscle-invasive bladder cancers, <it>ST3Gal.I </it>mRNA levels were significantly higher than corresponding urothelium (p < 0.001) and this increase was twice more pronounced in cancers with tendency for recurrence. In muscle-invasive cancers and matching urothelium, <it>ST3Gal.I </it>mRNA levels were as elevated as nonmuscle-invasive cancers. Both non-malignant bladder tumors and corresponding urothelium showed <it>ST3Gal.I </it>mRNA levels lower than all the other specimen groups. A good correlation was observed in bladder cancer cell lines between the <it>ST3Gal.I </it>mRNA level, the ST activity (r = 0.99; p = 0.001) and sialyl-T antigen expression, demonstrating that sialylation of T antigen is attributable to ST3Gal.I. The expression of sialyl-T antigens was found in patients' bladder tumors and urothelium, although without a marked relationship with mRNA level. The two <it>ST3Gal.I </it>transcript variants were also equally expressed, independently of cell phenotype or malignancy.</p> <p>Conclusion</p> <p>ST3Gal.I plays the major role in the sialylation of the T antigen in bladder cancer. The overexpression of <it>ST3Gal.I </it>seems to be part of the initial oncogenic transformation of bladder and can be considered when predicting cancer progression and recurrence.</p

    α2,3-Sialyltransferase ST3Gal III Modulates Pancreatic Cancer Cell Motility and Adhesion In Vitro and Enhances Its Metastatic Potential In Vivo

    Get PDF
    Background: Cell surface sialylation is emerging as an important feature of cancer cell metastasis. Sialyltransferase expression has been reported to be altered in tumours and may account for the formation of sialylated tumour antigens. We have focused on the influence of alpha-2,3-sialyltransferase ST3Gal III in key steps of the pancreatic tumorigenic process. Methodology/Principal Findings: ST3Gal III overexpressing pancreatic adenocarcinoma cell lines Capan-1 and MDAPanc-28 were generated. They showed an increase of the tumour associated antigen sialyl-Lewis x. The transfectants ’ E-selectin binding capacity was proportional to cell surface sialyl-Lewis x levels. Cellular migration positively correlated with ST3Gal III and sialyl-Lewis x levels. Moreover, intrasplenic injection of the ST3Gal III transfected cells into athymic nude mice showed a decrease in survival and higher metastasis formation when compared to the mock cells. Conclusion: In summary, the overexpression of ST3Gal III in these pancreatic adenocarcinoma cell lines underlines the rol

    N-glycosylation of mouse TRAIL-R and human TRAIL-R1 enhances TRAIL-induced death.

    Get PDF
    APO2L/TRAIL (TNF-related apoptosis-inducing ligand) induces death of tumor cells through two agonist receptors, TRAIL-R1 and TRAIL-R2. We demonstrate here that N-linked glycosylation (N-glyc) plays also an important regulatory role for TRAIL-R1-mediated and mouse TRAIL receptor (mTRAIL-R)-mediated apoptosis, but not for TRAIL-R2, which is devoid of N-glycans. Cells expressing N-glyc-defective mutants of TRAIL-R1 and mouse TRAIL-R were less sensitive to TRAIL than their wild-type counterparts. Defective apoptotic signaling by N-glyc-deficient TRAIL receptors was associated with lower TRAIL receptor aggregation and reduced DISC formation, but not with reduced TRAIL-binding affinity. Our results also indicate that TRAIL receptor N-glyc impacts immune evasion strategies. The cytomegalovirus (CMV) UL141 protein, which restricts cell-surface expression of human TRAIL death receptors, binds with significant higher affinity TRAIL-R1 lacking N-glyc, suggesting that this sugar modification may have evolved as a counterstrategy to prevent receptor inhibition by UL141. Altogether our findings demonstrate that N-glyc of TRAIL-R1 promotes TRAIL signaling and restricts virus-mediated inhibition

    Evolutional and clinical implications of the epigenetic regulation of protein glycosylation

    Get PDF
    Protein N glycosylation is an ancient posttranslational modification that enriches protein structure and function. The addition of one or more complex oligosaccharides (glycans) to the backbones of the majority of eukaryotic proteins makes the glycoproteome several orders of magnitude more complex than the proteome itself. Contrary to polypeptides, which are defined by a sequence of nucleotides in the corresponding genes, glycan parts of glycoproteins are synthesized by the activity of hundreds of factors forming a complex dynamic network. These are defined by both the DNA sequence and the modes of regulating gene expression levels of all the genes involved in N glycosylation. Due to the absence of a direct genetic template, glycans are particularly versatile and apparently a large part of human variation derives from differences in protein glycosylation. However, composition of the individual glycome is temporally very constant, indicating the existence of stable regulatory mechanisms. Studies of epigenetic mechanisms involved in protein glycosylation are still scarce, but the results suggest that they might not only be important for the maintenance of a particular glycophenotype through cell division and potentially across generations but also for the introduction of changes during the adaptive evolution

    Glycophenotypic Alterations Induced by Pteridium aquilinum in Mice Gastric Mucosa: Synergistic Effect with Helicobacter pylori Infection

    Get PDF
    The bracken fern Pteridium aquilinum is a plant known to be carcinogenic to animals. Epidemiological studies have shown an association between bracken fern exposure and gastric cancer development in humans. The biological effects of exposure to this plant within the gastric carcinogenesis process are not fully understood. In the present work, effects in the gastric mucosa of mice treated with Pteridium aquilinum were evaluated, as well as molecular mechanisms underlying the synergistic role with Helicobacter pylori infection. Our results showed that exposure to Pteridium aquilinum induces histomorphological modifications including increased expression of acidic glycoconjugates in the gastric mucosa. The transcriptome analysis of gastric mucosa showed that upon exposure to Pteridium aquilinum several glycosyltransferase genes were differently expressed, including Galntl4, C1galt1 and St3gal2, that are mainly involved in the biosynthesis of simple mucin-type carbohydrate antigens. Concomitant treatment with Pteridium aquilinum and infection with Helicobacter pylori also resulted in differently expressed glycosyltransferase genes underlying the biosynthesis of terminal sialylated Lewis antigens, including Sialyl-Lewisx. These results disclose the molecular basis for the altered pattern of glycan structures observed in the mice gastric mucosa. The gene transcription alterations and the induced glycophenotypic changes observed in the gastric mucosa contribute for the understanding of the molecular mechanisms underlying the role of Pteridium aquilinum in the gastric carcinogenesis process

    ST6GALNAC1 (ST6 (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-N-acetylgalactosaminide alpha-2,6-sialyltransferase 1)

    Get PDF
    Review on ST6GALNAC1 (ST6 (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-N-acetylgalactosaminide alpha-2,6-sialyltransferase 1), with data on DNA, on the protein encoded, and where the gene is implicated
    corecore