89 research outputs found

    An optical heterodyne densitometer

    Get PDF
    Researchers are developing an optical heterodyne densitometer with the potential to measure optical density over an unprecedented dynamic range with high accuracy and sensitivity. This device uses a Mach-Zender interferometer configuration with heterodyne detection to make direct comparisons between optical and RF attenuators. Researchers expect to attain measurements of filter transmittance down to 10 to the minus 12th power with better than 1 percent uncertainty. In addition, they intend to extend the technique to the problem of measuring low levels of light scattering from reflective and transmissive optics

    Nitrogen K-shell photoabsorption

    Full text link
    Reliable atomic data have been computed for the spectral modeling of the nitrogen K lines, which may lead to useful astrophysical diagnostics. Data sets comprise valence and K-vacancy level energies, wavelengths, Einstein AA-coefficients, radiative and Auger widths and K-edge photoionization cross sections. An important issue is the lack of measurements which are usually employed to fine-tune calculations so as to attain spectroscopic accuracy. In order to estimate data quality, several atomic structure codes are used and extensive comparisons with previous theoretical data have been carried out. In the calculation of K photoabsorption with the Breit--Pauli RR-matrix method, both radiation and Auger damping, which cause the smearing of the K edge, are taken into account. This work is part of a wider project to compute atomic data in the X-ray regime to be included in the database of the popular {\sc xstar} modeling code

    The Transiting System GJ1214: High-Precision Defocused Transit Observations and a Search for Evidence of Transit Timing Variation

    Get PDF
    Aims: We present 11 high-precision photometric transit observations of the transiting super-Earth planet GJ1214b. Combining these data with observations from other authors, we investigate the ephemeris for possible signs of transit timing variations (TTVs) using a Bayesian approach. Methods: The observations were obtained using telescope-defocusing techniques, and achieve a high precision with random errors in the photometry as low as 1mmag per point. To investigate the possibility of TTVs in the light curve, we calculate the overall probability of a TTV signal using Bayesian methods. Results: The observations are used to determine the photometric parameters and the physical properties of the GJ1214 system. Our results are in good agreement with published values. Individual times of mid-transit are measured with uncertainties as low as 10s, allowing us to reduce the uncertainty in the orbital period by a factor of two. Conclusions: A Bayesian analysis reveals that it is highly improbable that the observed transit times is explained by TTV, when compared with the simpler alternative of a linear ephemeris.Comment: Submitted to A&

    High-precision photometry by telescope defocussing - VI. WASP-24, WASP-25 and WASP-26

    Get PDF
    The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013/) under grant agreement nos. 229517 and 268421. This publication was supported by grants NPRP 09-476-1-078 and NPRP X-019-1-006 from Qatar National Research Fund (a member of Qatar Foundation). TCH acknowledges financial support from the Korea Research Council for Fundamental Science and Technology (KRCF) through the Young Research Scientist Fellowship Programme and is supported by the KASI (Korea Astronomy and Space Science Institute) grant 2012-1-410-02/2013-9-400-00. SG, XW and XF acknowledge the support from NSFC under the grant no. 10873031. The research is supported by the ASTERISK project (ASTERoseismic Investigations with SONG and Kepler) funded by the European Research Council (grant agreement no. 267864). DR, YD, AE, FF (ARC), OW (FNRS research fellow) and J Surdej acknowledge support from the Communauté française de Belgique – Actions de recherche concertées – Académie Wallonie-Europe.We present time series photometric observations of 13 transits in the planetary systems WASP-24, WASP-25 and WASP-26. All three systems have orbital obliquity measurements, WASP-24 and WASP-26 have been observed with Spitzer, and WASP-25 was previously comparatively neglected. Our light curves were obtained using the telescope-defocussing method and have scatters of 0.5–1.2 mmag relative to their best-fitting geometric models. We use these data to measure the physical properties and orbital ephemerides of the systems to high precision, finding that our improved measurements are in good agreement with previous studies. High-resolution Lucky Imaging observations of all three targets show no evidence for faint stars close enough to contaminate our photometry. We confirm the eclipsing nature of the star closest to WASP-24 and present the detection of a detached eclipsing binary within 4.25 arcmin of WASP-26.Publisher PDFPeer reviewe

    Characterizing Low-Mass Binaries From Observation of Long Time-scale Caustic-crossing Gravitational Microlensing Events

    Get PDF
    Despite astrophysical importance of binary star systems, detections are limited to those located in small ranges of separations, distances, and masses and thus it is necessary to use a variety of observational techniques for a complete view of stellar multiplicity across a broad range of physical parameters. In this paper, we report the detections and measurements of 2 binaries discovered from observations of microlensing events MOA-2011-BLG-090 and OGLE-2011-BLG-0417. Determinations of the binary masses are possible by simultaneously measuring the Einstein radius and the lens parallax. The measured masses of the binary components are 0.43 MM_{\odot} and 0.39 MM_{\odot} for MOA-2011-BLG-090 and 0.57 MM_{\odot} and 0.17 MM_{\odot} for OGLE-2011-BLG-0417 and thus both lens components of MOA-2011-BLG-090 and one component of OGLE-2011-BLG-0417 are M dwarfs, demonstrating the usefulness of microlensing in detecting binaries composed of low-mass components. From modeling of the light curves considering full Keplerian motion of the lens, we also measure the orbital parameters of the binaries. The blended light of OGLE-2011-BLG-0417 comes very likely from the lens itself, making it possible to check the microlensing orbital solution by follow-up radial-velocity observation. For both events, the caustic-crossing parts of the light curves, which are critical for determining the physical lens parameters, were resolved by high-cadence survey observations and thus it is expected that the number of microlensing binaries with measured physical parameters will increase in the future.Comment: 8 pages, 5 figures, 4 table

    MOA-2010-BLG-477Lb: constraining the mass of a microlensing planet from microlensing parallax, orbital motion and detection of blended light

    Get PDF
    Microlensing detections of cool planets are important for the construction of an unbiased sample to estimate the frequency of planets beyond the snow line, which is where giant planets are thought to form according to the core accretion theory of planet formation. In this paper, we report the discovery of a giant planet detected from the analysis of the light curve of a high-magnification microlensing event MOA-2010-BLG-477. The measured planet-star mass ratio is q=(2.181±0.004)×103q=(2.181\pm0.004)\times 10^{-3} and the projected separation is s=1.1228±0.0006s=1.1228\pm0.0006 in units of the Einstein radius. The angular Einstein radius is unusually large θE=1.38±0.11\theta_{\rm E}=1.38\pm 0.11 mas. Combining this measurement with constraints on the "microlens parallax" and the lens flux, we can only limit the host mass to the range 0.13<M/M<1.00.13<M/M_\odot<1.0. In this particular case, the strong degeneracy between microlensing parallax and planet orbital motion prevents us from measuring more accurate host and planet masses. However, we find that adding Bayesian priors from two effects (Galactic model and Keplerian orbit) each independently favors the upper end of this mass range, yielding star and planet masses of M=0.670.13+0.33 MM_*=0.67^{+0.33}_{-0.13}\ M_\odot and mp=1.50.3+0.8 MJUPm_p=1.5^{+0.8}_{-0.3}\ M_{\rm JUP} at a distance of D=2.3±0.6D=2.3\pm0.6 kpc, and with a semi-major axis of a=21+3a=2^{+3}_{-1} AU. Finally, we show that the lens mass can be determined from future high-resolution near-IR adaptive optics observations independently from two effects, photometric and astrometric.Comment: 3 Tables, 12 Figures, accepted in Ap

    Physical properties, transmission and emission spectra of the WASP-19 planetary system from multi-colour photometry

    Get PDF
    We present new ground-based, multi-colour, broad-band photometric measurements of the physical parameters, transmission and emission spectra of the transiting extrasolar planet WASP-19b. The measurements are based on observations of eight transits and four occultations through a Gunn i filter using the 1.54-m Danish Telescope, 14 transits through an Rc filter at the Perth Exoplanet SurveyTelescope (PEST) observatory and one transit observed simultaneously through four optical (Sloan g\u27, r\u27, i\u27, z\u27) and three near-infrared (J,H,K) filters, using the Gamma Ray Burst Optical and Near-Infrared Detector (GROND) instrument on the MPG/ESO 2.2-m telescope. The GROND optical light curves have a point-to-point scatter around the best-fitting model between 0.52 and 0.65 mmag rms. We use these new data to measure refined physical parameters for the system. We find the planet to be more bloated (Rb = 1.410 ± 0.017RJup; Mb = 1.139 ± 0.030MJup) and the system to be twice as old as initially thought. We also used published and archived data sets to study the transit timings, which do not depart from a linear ephemeris. We detected an anomaly in the GROND transit light curve which is compatible with a spot on the photosphere of the parent star. The starspot position, size, spot contrast and temperature were established. Using our new and published measurements, we assembled the planet\u27s transmission spectrum over the 370-2350 nm wavelength range and its emission spectrum over the 750-8000 nm range. By comparing these data to theoretical models we investigated the theoretically predicted variation of the apparent radius of WASP- 19b as a function of wavelength and studied the composition and thermal structure of its atmosphere. We conclude that: (i) there is no evidence for strong optical absorbers at low pressure, supporting the common idea that the planet\u27s atmosphere lacks a dayside inversion; (ii) the temperature of the planet is not homogenized, because the high warming of its dayside causes the planet to be more efficient in re-radiating than redistributing energy to the night side; (iii) the planet seems to be outside of any current classification scheme. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society

    A giant planet beyond the snow line in microlensing event OGLE-2011-BLG-0251

    Get PDF
    Aims. We present the analysis of the gravitational microlensing event OGLE-2011-BLG-0251. This anomalous event was observed by several survey and follow-up collaborations conducting microlensing observations towards the Galactic bulge. Methods. Based on detailed modelling of the observed light curve, we find that the lens is composed of two masses with a mass ratio q = 1.9 × 10-3. Thanks to our detection of higher-order effects on the light curve due to the Earth\u27s orbital motion and the finite size of source, we are able to measure the mass and distance to the lens unambiguously. Results. We find that the lens is made up of a planet of mass 0.53 ± 0.21 M J orbiting an M dwarf host star with a mass of 0.26 ± 0.11 M⊙. The planetary system is located at a distance of 2.57 ± 0.61 kpc towards the Galactic centre. The projected separation of the planet from its host star is d = 1.408 ± 0.019, in units of the Einstein radius, which corresponds to 2.72 ± 0.75 AU in physical units. We also identified a competitive model with similar planet and host star masses, but with a smaller orbital radius of 1.50 ± 0.50 AU. The planet is therefore located beyond the snow line of its host star, which we estimate to be around ~1-1.5 AU. © 2013 ESO

    MiNDSTEp differential photometry of the gravitationally lensed quasars WFI 2033-4723 and HE 0047-1756: Microlensing and a new time delay

    Get PDF
    Aims. We present V and R photometry of the gravitationally lensed quasars WFI 2033-4723 and HE 0047-1756. The data were taken by the MiNDSTEp collaboration with the 1.54 m Danish telescope at the ESO La Silla observatory from 2008 to 2012. Methods. Differential photometry has been carried out using the image subtraction method as implemented in the HOTPAnTS package, additionally using GALFIT for quasar photometry. Results. The quasar WFI 2033-4723 showed brightness variations of order 0.5 mag in V and R during the campaign. The two lensed components of quasar HE 0047-1756 varied by 0.2-0.3 mag within five years. We provide, for the first time, an estimate of the time delay of component B with respect to A of Δt = (7.6 ± 1.8) days for this object. We also find evidence for a secular evolution of the magnitude difference between components A and B in both filters, which we explain as due to a long-duration microlensing event. Finally we find that both quasars WFI 2033-4723 and HE 0047-1756 become bluer when brighter, which is consistent with previous studies
    corecore