503 research outputs found

    Applying a statewide geospatial leaching tool for assessing soil vulnerability ratings for agrochemicals across the contiguous United States

    Get PDF
    A large-scale leaching assessment tool not only illustrates soil (or groundwater) vulnerability in unmonitored areas, but also can identify areas of potential concern for agrochemical contamination. This study describes the methodology of how the statewide leaching tool in Hawaii modified recently for use with pesticides and volatile organic compounds can be extended to the national assessment of soil vulnerability ratings. For this study, the tool was updated by extending the soil and recharge maps to cover the lower 48 states in the United States (US). In addition, digital maps of annual pesticide use (at a national scale) as well as detailed soil properties and monthly recharge rates (at high spatial and temporal resolutions) were used to examine variations in the leaching (loads) of pesticides for the upper soil horizons. Results showed that the extended tool successfully delineated areas of high to low vulnerability to selected pesticides. The leaching potential was high for picloram, medium for simazine, and low to negligible for 2,4-D and glyphosate. The mass loadings of picloram moving below 0.5 m depth increased greatly in northwestern and central US that recorded its extensive use in agricultural crops. However, in addition to the amount of pesticide used, annual leaching load of atrazine was also affected by other factors that determined the intrinsic aquifer vulnerability such as soil and recharge properties. Spatial and temporal resolutions of digital maps had a great effect on the leaching potential of pesticides, requiring a trade-off between data availability and accuracy. Potential applications of this tool include the rapid, large-scale vulnerability assessments for emerging contaminants which are hard to quantify directly through vadose zone models due to lack of full environmental data

    Carbon dynamics and export from flooded wetlands: A modeling approach

    Get PDF
    Described in this article is development and validation of a process based model for carbon cycling in flooded wetlands, called WetQual-C. The model considers various biogeochemical interactions affecting C cycling, greenhouse gas emissions, organic carbon export and retention. WetQual-C couples carbon cycling with other interrelated geochemical cycles in wetlands, i.e. nitrogen and oxygen; and fully reflects the dynamics of the thin oxidized zone at the soil-water interface. Using field collected data from a small wetland receiving runoff from an agricultural watershed on the eastern shore of Chesapeake Bay, we assessed model performance and carried out a thorough sensitivity and uncertainty analysis to evaluate the credibility of the model. Overall, model performed well in capturing TOC export fluctuations and dynamics from the study wetland. Model results revealed that over a period of 2 years, the wetland removed or retained equivalent to 47 ± 12% of the OC carbon intake, mostly via OC decomposition and DOC diffusion to sediment. The study wetland appeared as a carbon sink rather than source and proved its purpose as a relatively effective and low cost mean for improving water quality

    A Stochastic Analysis of Pumping Tests in Laterally Nonuniform Media

    Get PDF
    This is the published version. Copyright American Geophysical UnionConventional pumping test analysis methodology assumes that aquifer transmissivity is invariant in space. The ramifications of this assumption are examined for hypothetical units whose variations in transmissivity are considered to be reasonable representations of variations possible in natural systems. The dependence of pumping test transmissivity on spatial (angular and radial) and temporal location of observations and the method of drawdown analysis is assessed. The dependence on the angular position of an observation well appears of little significance. Dependence on radial position, however, can be strong. The dependence on the interval of time used in the pumping test analysis is only important in highly variable systems. Methods of drawdown analysis that yield identical estimates in uniform units yield differing estimates in nonuniform ones as a result of a difference in data-fitting procedures. A reasonable estimate of transmissivity at a regional scale can be obtained from a Cooper-Jacob analysis applied at a large duration of pumpage. In general, conventional approaches for pumping test analysis should be viable in the nonuniform aquifers of the type considered here

    Paralellized ensemble Kalman filter for hydraulic conductivity characterization

    Full text link
    [EN] The ensemble Kalman filter (EnKF) is nowadays recognized as an excellent inverse method for hydraulic conductivity characterization using transient piezometric head data. Its implementation is well suited for a parallel computing environment. A parallel code has been designed that uses parallelization both in the forecast step and in the analysis step. In the forecast step, each member of the ensemble is sent to a different processor, while in the analysis step, the computations of the covariances are distributed between the different processors. An important aspect of the parallelization is to limit as much as possible the communication between the processors in order to maximize execution time reduction. Four tests are carried out to evaluate the performance of the parallelization with different ensemble and model sizes. The results show the savings provided by the parallel EnKF, especially for a large number of ensemble realizations. (c) 2012 Elsevier Ltd. All rights reserved.The first author acknowledges the financial support from China Scholarship Council (CSC). Financial support to carry out this work was also received from the Spanish Ministry of Science and Innovation through project CGL2011-23295, and from the Universitat Politecnica de Valencia through project PERFORA.Xu, T.; Gómez-Hernández, JJ.; Li ., L.; Zhou ., H. (2013). Paralellized ensemble Kalman filter for hydraulic conductivity characterization. Computers and Geosciences. 52:42-49. https://doi.org/10.1016/j.cageo.2012.10.007S42495

    Introducing the 2-DROPS model for two-dimensional simulation of crop roots and pesticide within the soil-root zone

    Get PDF
    Mathematical models of pesticide fate and behaviour in soils have been developed over the last 30 years. Most models simulate fate of pesticides in a 1-dimensional system successfully, supporting a range of applications where the prediction target is either bulk residues in soil or receiving compartments outside of the soil zone. Nevertheless, it has been argued that the 1-dimensional approach is limiting the application of knowledge on pesticide fate under specific pesticide placement strategies, such as seed, furrow and band applications to control pests and weeds. We report a new model (2-DROPS; 2-Dimensional ROots and Pesticide Simulation) parameterised for maize and we present simulations investigating the impact of pesticide properties (thiamethoxam, chlorpyrifos, clothianidin and tefluthrin), pesticide placement strategies (seed treatment, furrow, band and broadcast applications), and soil properties (two silty clay loam and two loam top soils with either silty clay loam, silt loam, sandy loam or unconsolidated bedrock in the lower horizons) on microscale pesticide distribution in the soil profile. 2-DROPS is to our knowledge the first model that simulates temporally- and spatially-explicit water and pesticide transport in the soil profile under the influence of explicit and stochastic development of root segments. This allows the model to describe microscale movement of pesticide in relation to root segments, and constitutes an important addition relative to existing models. The example runs demonstrate that the pesticide moves locally towards root segments due to water extraction for plant transpiration, that the water holding capacity of the top soil determines pesticide transport towards the soil surface in response to soil evaporation, and that the soil type influences the pesticide distribution zone in all directions. 2-DROPS offers more detailed information on microscale root and pesticide appearance compared to existing models and provides the possibility to investigate strategies targeting control of pests at the root/soil interface

    Borehole water level response to barometric pressure as an indicator of aquifer vulnerability

    Get PDF
    The response of borehole water levels to barometric pressure changes in semiconfined aquifers can be used to determine barometric response functions from which aquifer and confining layer properties can be obtained. Following earlier work on barometric response functions and aquifer confinement, we explore the barometric response function as a tool to improve the assessment of groundwater vulnerability in semiconfined aquifers, illustrated through records from two contrasting boreholes in the semiconfined Chalk Aquifer, East Yorkshire, UK. After removal of recharge and Earth tide influences on the water level signal, barometric response functions were estimated and aquifer and confining layer properties determined through an analytical model of borehole water level response to barometric pressure. A link between the thickness and vertical diffusivity of the confining layer determined from the barometric response function, and groundwater vulnerability is proposed. The amplitude spectrum for barometric pressure and instrument resolution favor determination of the barometric response function at frequencies to which confining layer diffusivities are most sensitive. Numerical modeling indicates that while the high frequency response reflects confining layer properties in the immediate vicinity of the borehole, the low frequency response reflects vertical, high diffusivity pathways though the confining layer some hundreds of meters distant. A characteristic time scale parameter, based on vertical diffusivities and thicknesses of the saturated and unsaturated confining layer, is introduced as a measure of semiconfined aquifer vulnerability. The study demonstrates that the barometric response function has potential as a tool for quantitative aquifer vulnerability assessment in semiconfined aquifers
    • …
    corecore