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a  b  s  t  r  a  c  t

Described  in  this  article  is  development  and  validation  of a  process  based  model  for  carbon  cycling  in
flooded  wetlands,  called  WetQual-C.  The  model  considers  various  biogeochemical  interactions  affecting
C cycling,  greenhouse  gas  emissions,  organic  carbon  export  and retention.  WetQual-C  couples  carbon
cycling  with  other  interrelated  geochemical  cycles  in wetlands,  i.e. nitrogen  and  oxygen;  and  fully  reflects
the  dynamics  of the  thin oxidized  zone  at the  soil-water  interface.  Using  field  collected  data  from  a  small
wetland  receiving  runoff  from  an  agricultural  watershed  on the eastern  shore  of  Chesapeake  Bay,  we
assessed  model  performance  and  carried  out a thorough  sensitivity  and  uncertainty  analysis  to  evaluate
the  credibility  of the model.  Overall,  model  performed  well  in  capturing  TOC  export  fluctuations  and
dynamics  from  the  study  wetland.  Model  results  revealed  that over  a period  of  2 years,  the  wetland
removed  or  retained  equivalent  to 47  ± 12% of  the  OC  carbon  intake,  mostly  via  OC decomposition  and
DOC  diffusion  to  sediment.  The  study  wetland  appeared  as  a carbon  sink  rather than  source  and  proved
its purpose  as  a relatively  effective  and  low  cost  mean  for improving  water  quality.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Wetlands are environments characterized with waterlogged
soils and biota adapted to saturated soil conditions. They are
found in almost every climate and continent (with exception of
Antarctica) and recognized for their unique role in regulating global
biogeochemical cycles (Reddy and DeLaune, 2008).

In the context of global biogeochemical budgets, it is the carbon
(C) cycle that wetlands influence the most. Because of high pro-
ductivity and slow decomposition rates, wetlands have the highest
carbon density among all terrestrial ecosystems (Kayranli et al.,
2010). Despite covering less than 8% of the terrestrial land surface
(Aselmann and Crutzen, 1989; Mitsch and Gosselink, 2007), wet-
lands are the greatest individual source of methane emission to
the atmosphere (Walter and Heimann, 2000). Wetland methane

∗ Corresponding author. Tel.: +1 334 844 4671; fax: +1 334 844 1084.
E-mail address: Latif@auburn.edu (L. Kalin).

emissions have been estimated about 100–231 Tg CH4 yr−1

which accounts for 17–40% of the global (anthropogenic + natural)
methane emissions annually (Denman et al., 2007). Influence of
wetlands on global carbon balance is not limited to sequestering
atmospheric carbon and emitting greenhouse gasses. When hydro-
logically connected to surface flow, wetlands export carbon in form
of dissolved and particulate organic material (DOM and POM) to
receiving waters (Reddy and DeLaune, 2008), acting as primary
source of humic substances to freshwater aquatic systems (Stern
et al., 2007; Ziegler and Fogel, 2003). Much of the organic material
exported from wetlands eventually end up in oceans and it is esti-
mated that 15% of the terrestrial organic matter flux to the oceans
originate from wetlands (Hedges et al., 1997; Tranvik and Jansson,
2002).

Wetlands are widely referred to as “the kidneys of the catch-
ment” due to their effectiveness in trapping sediment and nutrient
loadings from surface waters (Mitchell, 1994; Mitsch and Gosselink,
2007). But the fact that wetlands can be net exporters of organic car-
bon (OC) potentially offsets their purifying benefits. Discharge of
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carbon from wetlands will result in water quality degradation with
the release of dissolved organic carbon (DOC), also known as water
color (Worrall et al., 2003). At high concentrations, DOC reacts
with chlorine during drinking water treatment to form carcino-
genic disinfection byproducts (Chow et al., 2003). Also because of
its hydrophobic nature, DOC is shown to be a medium of transport
for other pollutants such as nutrients and heavy metals (Canário
et al., 2008; Steinberg, 2003).

Because of the great influence of wetlands on global C cycling,
and specifically considering the significant impact of wetlands
greenhouse gas (GHG) emissions on global warming, considerable
scientific efforts have been invested in quantifying wetland C stor-
age, turnover, hydrologic exports and carbon interchanges between
wetland soils and atmosphere. Wetland models have provided
powerful tools for quantifying these budgets where field studies
were not practical or projections for future budgets were called
for. Various C cycling models have been developed for wetlands
over the past three decades (Mitsch et al., 1988). Although these
models varied in scale of application (temporally and spatially),
complexity and approach (empirical vs. physically based) they all
roughly targeted similar objectives. These objectives were to (1)
synthesize our knowledge of complex interactions between wet-
land soil, hydrology and vegetation; and (2) assess, quantify and
predict impacts of climate change or management alternatives on
C dynamics, storage and export from wetlands (Cui et al., 2005;
Zhang et al., 2002). Existing wetland C models can generally be
classified into various categories based on the final specific prod-
uct of the C cycle that they are geared to simulate. These categories
can be confined to long term-peat accumulation related models,
greenhouse gas (CH4 and CO2) emission models and wetland OC
turnover and export models. Models falling into the last category
are more or less specific to treatment wetlands (e.g. King et al.,
2003; Penha-Lopes et al., 2012 and Stern et al., 2007). Wetland
GHG emission models have received the most attention among
all categories in recent years. Among the latest and most compre-
hensive models in this category is the work of Tang et al. (2010)
where they revised a previously developed geochemistry model
(TEM model, Zhuang et al., 2004) into a multi substance model to
simulate methane production, oxidation and transport with differ-
ent model complexities. The model uses a probabilistic algorithm to
account for the effects of hydrostacy on ebullition. At the most com-
plex, the model considers four substances (O2, N2, CO2 and CH4)
and accounts for the inhibitory effect of O2 on CH4 production and
the stimulatory effect of O2 on CH4 oxidation. At the simplest, the
model was reduced to a one substance system (CH4 only) by ignor-
ing the role of O2. The authors concluded that the four substance
model predicted the effects of atmospheric pressure and water
table dynamics on methane effluxes more accurately than sim-
pler tested models. Another recent methane model development,
designed for large-scale simulation of CH4 emissions from north-
ern peatlands, is described by Wania et al. (2010). The methane
model takes into account the interactions between hydrology, soil
temperature and vegetation leading to methane production and
emission. The model was integrated into a dynamic global vegeta-
tion model and applied to various peatland sites. Despite the fact
that the model setup does not require site-specific input data, it
performs reasonably well in predicting methane production and
emission from northern peatlands.

The purpose of this paper was to develop a physically based
model for carbon cycling and methane production in flooded wet-
lands. As stated earlier, many of the existing wetland water quality
models focus on a single end product of the carbon cycle, i.e.
methane production, OC export or OC deposition. In this study, we
aim to advance the current state of wetland modeling by introduc-
ing a computationally simple – yet comprehensive – mechanistic
wetland carbon cycling model. The proposed model in this study

reflects various biogeochemical interactions affecting C cycling in
wetlands, and is capable of simulating the dynamics of OC reten-
tion, OC export and GHG emissions. What makes this model special
is the fact that it is coupled with other interrelated geochemical
cycles (i.e. nitrogen and oxygen) and fully reflects the dynamics of
sediment–water interactions in flooded wetlands. Another unique
aspect of the developed model is its approach towards modeling the
formation of the thin oxidized zone at wetlands soil-water inter-
face and the oxidation–reduction reactions taking place within that
zone (Mitsch and Gosselink, 2007; Reddy and DeLaune, 2008). We
perform a thorough sensitivity and uncertainty analysis on model
components to validate its credibility using field collected data
from a small wetland that receives runoff from an agricultural land.
In the following sections of the paper, we describe the structure of
the model and the methodology on model assessment. Finally the
results are presented and discussed.

2. Model description

2.1. WetQual-C model

WetQual-C model is an extension to WetQual model, a previ-
ously developed wetland nutrient cycling model (Hantush et al.,
2012). WetQual is a process based model for nitrogen and phospho-
rus retention, cycling, and removal in flooded wetlands. The model
simulates oxygen dynamics and impact of oxidizing and reduc-
ing conditions on nitrogen transformation and removal as well
as phosphorus retention and release. WetQual explicitly accounts
for nitrogen loss pathways of volatilization and denitrification. The
model separates free floating plant biomass (e.g., phytoplankton)
from rooted aquatic plants and uses a simple model for produc-
tivity in which daily growth rate is related to daily solar radiation
and annual growth rate of plants. In developing WetQual-C, we
followed the same compartmental structure as WetQual, where
a wetland is partitioned into two basic compartments; the water
column (free-water) and wetland soil layer. The soil layer is fur-
ther partitioned into a generalized model of aerobic and anaerobic
zones where the boundary between the two zones fluctuates up
or down based on competing oxygen supply and removal rates.
To reflect the complex cycling of organic matter and methane
production in flooded wetlands, it was necessary to posit several
organic and inorganic carbon pools within WetQual-C model. As
can be viewed in Fig. 1, two pools for particulate organic carbon
(POC) are considered in the model, one representing fast reacting,
easily degradable organic material (e.g. non-humic substances,
carbohydrates) and the other describing recalcitrant, slow reac-
ting solids (e.g. phenolic and humic substances). The former pool
is called labile particulate organic carbon (LPOC) and the latter
pool is referred to as refractory particulate organic carbon (RPOC).
A third organic pool represents dissolved organic carbon (DOC).
Model allows for allochthonous sources (hydrologic loads) and
autochthonous sources to contribute to all three organic pools. If
wetland is hydrologically connected to surface flow, or is intended
as means for treating water, a significant amount of external organic
C can be transferred into the system via incoming flow, originat-
ing from point sources (e.g. sewage pipes) or diffuse source upland
areas (e.g. agricultural fields). An internal source for DOC and POC
includes plant matter from emergent macrophytes, algal mats and
litter fall from trees in forested wetlands.

A stepwise conversion process is considered in the model to
portray all stages of plant turnover and OM decomposition. When
plants senesce, part of their biomass leaches out physically in
form of water soluble–highly labile–organic compounds (Reddy
and DeLaune, 2008). Within each compartment in the model (water
and sediment), this portion of the biomass is directly added to the
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Fig. 1. Conceptual model for carbon cycling in flooded wetlands. The wetland is partitioned into two  layers: water and sediment. Sediment layer is further partitioned into
aerobic  and anaerobic (reduced) zones. The boundary between the two  sediment zones fluctuates up or down dynamically based on sediment and water oxygen demands.

DOC pool. Rest of the biomass (detritus) is fragmented between
LPOC and RPOC pools with split ratios depending on type of plant
and quality of detritus. Parts of the plants with higher biodegrad-
ability and low in lignin content are directed to LPOC pool, whereas
more stable fragments, such as conductive and supportive tissue
cells, are allocated to RPOC pool. In a process called hydrolysis, com-
plex high molecular-weight organic matters are broken down into
smaller and simpler compounds. This process is mediated by extra-
cellular enzymes released by microorganisms (bacteria and fungi)
living in soil and on the surface of plants. In the model, hydroly-
sis process affects LPOC and RPOC pools, such that they gradually
decay and turn into DOC. In the model, LPOC and RPOC hydroly-
sis rates are temperature dependent, however, on average, LPOC
hydrolysis rate is about 10 times faster than RPOC in the model
(Cerco and Cole, 1995; Reddy and DeLaune, 2008). This difference
makes RPOC in water column more prone to settling and burial
whereas LPOC can decompose partly in water. In natural wetlands,
burial is a potential loss pathway caused by net sedimentation. This
important process has significant long-term impact on OC mass bal-
ance (e.g., at the annual time scale or decades). Burial is considered
in WetQual-C by moving the water-soil interface upward. In other
words, both particulate and dissolved pore-water constituents are
moving downward with a velocity equal to the burial rate relative
to an upward moving soil water interface.

At the last step of decomposition, simpler organic compounds
are assimilated, oxidized and turned into inorganic molecules,
mainly CO2, by heterotrophic microorganisms. In the water col-
umn  and the aerobic sediment layer, where oxygen is abundant,
aerobic heterotrophs dominate decomposition and release CO2.
In anaerobic sediment layer and in the absence of oxygen, dom-
inant microbial groups are anaerobes. Depending on availability
of electron acceptors (oxidants) in wetland soil (e.g. NO3

−, Mn4+,
Fe3+, SO4

2−), different communities of anaerobes oxidize simple

organic molecules and release carbon dioxide. Methane is only pro-
duced when all other electron acceptors are reduced in wetland soil
(Mitsch and Gosselink, 2007). This process is called methanogenesis
and is performed by a group of microbes named methanogens, com-
monly using CO2 as electron acceptor (Reddy and DeLaune, 2008).
WetQual-C considers DOC pool as potential reservoir for oxic and
anoxic/anaerobic respiration.

2.2. Mass balance equations

The mass balance equations presented below account for the
processes, interactions and loss pathways for organic and inor-
ganic carbon in a typical flooded wetland. The equations are in form
of ordinary differential equations and solved numerically using an
explicit scheme with forward difference approximation. In the fol-
lowing section, mass balance relationships for organic C pools in
water and sediment columns are expressed first. Following that, we
present relationships employed in WetQual-C model for dynamic
simulation of inorganic C pools (methane in water and sediment
columns).

2.2.1. Organic C
Water Column:

�w
d(VwCLw)

dt
= QinCLi + acakdafaLa + acakdbfbwfbLb − �wVwkLCLw

− QoCLw − vs�wACLw + vr�wACL1 (1)

�w
d(VwCRw)

dt
= QinCRi + acakdafaRa + acakdbfbwfbRb − �wVwkRCRw

− QoCRw − vs�wACRw + vr�wACR1 (2)
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ϕw
d(VwCDw)

dt
= QinCDi + acakdafaDa + acakdbfbwfbDb + ϕwVwkLCLw

+ ϕwVwkRCRw − QoCDw + Fw
CDg

+ ˇD1A(CD1 − CDw)

− ϕwVw
Ow

Ow + KO
k1

DCDw

− ϕwVw
Kin

O

Ow + Kin
O

Nnw

Nnw + KN
k2

DCDw (3)

in which

Fw
CDg

=
{

QgCD1, Qg > 0

QgCDw, Qg < 0
(4)

where CLw, CRw and CDw, respectively, are concentrations of labile
(fast reacting) particulate organic C (LPOC), refractory (slow reac-
ting) particulate organic C and dissolved organic C in free water
[ML−3]; a is mass of free floating and attached plants [M Chl a];
b is mass of rooted plants [M Chl a]; CLi, CRi and CDi are respec-
tively concentrations of LPOC, RPOC and DOC in incoming flow
[ML−3]; CL1, CR1 and CD1 are pore water concentrations of LPOC,
RPOC and DOC in aerobic sediment layer, respectively [ML−3]; vs

and vr are effective settling and resuspention rates for organic
material in water [LT−1]; Vw is water volume of wetland surface
water [L3]; A is wetland surface area [L2]; Qi is volumetric inflow
rate [L3T−1]; Qo is wetland discharge (outflow) rate [L3T−1]; Fw

CDg

is groundwater source/loss for DOC [MT−1] and Qg is groundwater
flow [LT−3] that can be either positive (upwards–discharging to the
wetland) or negative (downwards–recharging groundwater table).
Ow and Nnw are, respectively, concentration of oxygen and NO3 in
water column. Since plant biomass occupies part of submerged
wetland volume, we defined ϕw as effective porosity of wetland
surface water to account for such effects. Other related biochemical
parameters and reaction rates applied in WetQual-C formulation
are defined in Table 1. When oxygen is present in water, aerobic
heterotrophs dominate microbial decomposition. Thus, as appears
in Eq. (3), oxic respiration is the dominant reaction when oxygen is
abundant in water column. When oxygen is depleted from water,
the model allows for denitrification in water column. In freshwater
wetlands, it is safe to assume that redox potential does not drop
below 100 mV  in water column (Reddy and DeLaune, 2008), thus,
the lowest redox reaction allowed in water column is denitrifi-
cation. Using Michaelis–Menten kinetics, the rate of aerobic DOC
oxidation is limited by oxygen levels (concentration) in water. KO
is half saturation concentration of oxygen for aerobic respiration,
equivalent to a concentration of O2 at which aerobic respiration rate
is half of its maximum (k1

D). Similarly, denitrification of DOC (last
term on right hand side of Eq. (3) is limited by both nitrate and oxy-
gen concentrations. Michaelis–Menten coefficients of KO, Kin

O and
KN are used as calibration parameters throughout most DOC and
CH4 related equations.

Aerobic Sediment Layer:

Vs1
dCL1

dt
= acakdbf1fbsfbLb − Vs1kLCL1 + f1�wvsACLw

− f1vrACL1 − vbACL1 (5)

Vs1
dCR1

dt
= acakdbf1fbsfbRb − Vs1kRCR1 + f1�wvsACRw − f1vrACR1

− vbACR1 (6)

�Vs1
dCD1

dt
= acakdbf1fbsfbDb + Vs1kLCL1 + Vs1kRCR1

− BD1A(CD1 − CDw) − ˇD2A(CD1 − CD2) + F1
CDg

− �Vs1
Os1

Os1 + KO
k1

DCD1 − �vbACD1 (7)

in which

FDg
C =

{
QgCD2 − QgCD1, Qg > 0

QgCD1 − QgCDw, Qg < 0
(8)

where Vs1 is volume of aerobic sediment layer (Vs1 = l1 × Aw) [L3];
CD2 is pore water concentration of DOC in lower anaerobic sedi-
ment layer [ML−3], Os1 is oxygen concentration in aerobic sediment
(Os1 = Ow/2) and F1

CDg
is groundwater source/loss of DOC  from aer-

obic sediment layer [MT−1]. Eq. (9) defines the thickness of the top
oxic soil layer [L]:

l1 = −��ı +
√

(��ı)2 + 2��D∗
oOw

˝
(9)

where Ow is oxygen concentration in free water [ML−3], ı is the
thickness of a laminar (diffusive) boundary layer situated on top of
the soil-water interface [L] (ı ≈ h/2 for shallow wetland waters); � is
the wetland soil tortuosity factor; D∗

o is free-water oxygen diffusion
coefficient [L2T−1] and  ̋ is oxygen removal rate per unit volume of
aerobic soil layer [ML−3T−1]. Once l1 is computed, the thickness of
the lower anoxic layer would be l2 = H − l1 where H is the thickness
for active sediment layer [L]. Refer to Hantush et al. (2012) for more
details on oxygen dynamics in WetQual model. Definitions for rest
of the parameters are either presented earlier or could be found in
Table 1.

Anaerobic Sediment Layer:

Vs2
dCL2

dt
= acakdbf2fbsfbLb − Vs2kLCL2 + f2�wvsACLw − f2vr�wACL2

− vbA(CL2 − CL1) (10)

Vs2
dCR2

dt
= acakdbf2fbsfbRb − Vs2kRCR2 + f2�wvsACRw

− f2vr�wACR2 − vbA(CR2 − CR1) (11)

�Vs2
dCD2

dt
= acakdbf2fbsfbDb + Vs2kLCL2 + Vs2kRCR2

− ˇD2A(CD2 − CD1) + F2
CDg

− �vbA(CD2 − CD1)

− �Vs2
Nn2

Nn2 + KN
k2

DCD2 − �Vs2
Kin

N

Nn2 + Kin
N

k3
DCD2 (12)

in which

FDg
C =

{
QgCg − QgCs2, Qg > 0

QgCs2 − QgCs1, Qg < 0
(13)

where Vs2 is volume of aerobic sediment layer (Vs2 = l2 × Aw) [L3];
CL2 and CR2 are pore water concentrations of LPOC and RPOC
in lower anaerobic sediment layer respectively [ML−3]; F2

CDg
is

groundwater source/loss of DOC from anaerobic sediment layer
[MT−1].

Since resuspension is a purely hydrodynamic process and inde-
pendent of the soil redox condition, we allow resuspension from
the entire active soil layer rather than limiting LPOC and RPOC
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Table 1
WetQual-C model parameter definitions.

Symbol Definition Dimension unit

aca Ratio of carbon to chlorophyll-a in algae MM−1

amc The stoichiometric yield of Methane from the anaerobic decomposition of a gram of organic
carbon during methanogenesis

MM−1

ˇD1,ˇM1 Diffusive mass-transfer rates, respectively, of DOC and CH4 between wetland water and
aerobic soil layer (see appendix B for details)

LT−1

ˇD2,ˇM2 Diffusive mass-transfer rates, respectively, of DOC and CH4 between wetland water and lower
anaerobic soil layer (see appendix B for details)

LT−1

C* Equilibrium concentration of CH4 in atmosphere ML−3

D
� Diffusivity of Methane in air L2T−1

D∗
M

, D∗
D

Diffusivity of methane and DOC in water, respectively L2T−1

f1 Volumetric fraction of the active soil layer that is aerobic f1 = l1
l1+l2

Dimensionless

f2 Volumetric fraction of the active soil layer that is anaerobic f2 = l2
l1+l2

Dimensionless

faL , faR , faD Fraction of, respectively, labile particulate, refractory particulate and dissolved organic C
produced by death/loss of free floating plants and attached algae (faL + faR + faD = 1)

Dimensionless

fbL , fbR , fbD Fraction of, respectively, labile particulate, refractory particulate and dissolved organic C
produced by death/loss of rooted and benthic plants (fbL + fbR + fbD = 1)

Dimensionless

fbw, fbs Fraction of rooted plant biomass, respectively, above and under soil-water interface Dimensionless
H  Thickness of active soil layer H = l1 + l2 L
h  Average depth of water in wetland L
JM Methane mass exchange coefficient between water and atmosphere LT−1

k1
D

, k2
D

, k3
D

Maximum dissolved organic C utilization rate for, respectively, aerobic respiration,
denitrification and methanogenesis

T−1

k1
M

, k2
M

Maximum methane utilization rate for, respectively, aerobic respiration and denitrification T−1

kda Death rate of free floating plants T−1

kdb Death rate of rooted and benthic plants T−1

Kin
O

Michaelis–Menten oxygen inhabitation coefficient ML−3

Kin
N

Michaelis–Menten nitrate-N inhibition coefficient ML−3

kL , kR First order hydrolysis rate of labile particulate organic carbon and refractory particulate
organic carbon, respectively

T−1

KN Michaelis–Menten nitrate N half saturation concentration required for denitrification ML−3

KO Michaelis–Menten half saturation concentration of dissolved oxygen required for oxic
respiration

ML−3

l1, l2 Thickness of aerobic and anaerobic sediment layers L
ScM Schmidt number of methane Dimensionless
SB Bunsen solubility coefficient for methane Dimensionless
vr Resuspension/recycling rate of particulate organic C LT−1

vs Settling loss rate of particulate organic C LT−1

� Temperature coefficient in Arhenious equation. (see appendix A for parameters that are
adjusted with temperature)

Dimensionless

�r Specific conductivity of root system LL−1

� Tortuosity of sediment Dimensionless
�  Porosity of sediment Dimensionless
�w Effective porosity of wetland surface water Dimensionless

resuspension to the top aerobic soil compartment. Each of the soil
compartments contributes an amount proportional to its respective
thickness.

2.2.2. Methane-C (CH4)
Before being released to the atmosphere, methane produced in

reduced wetland soil is subjected to several geochemical and phys-
ical transformations. Methane emission to atmosphere is a balance
between methane production, oxidation and transport within the
soil and water (Bradford et al., 2001; Chan and Parkin, 2000; Reddy
and DeLaune, 2008; Wania et al., 2010). Methane is transported to
atmosphere via three different pathways of (1) plant aided diffusive
exchange via aerenchyma of plants roots and stands (2) molecular
diffusive flux through soil and water (3) abrupt elimination in form
of bubbles (ebullition). Much of the transferred methane through
molecular diffusion (up to 90%) and plant aided exchange (up to
50%) is oxidized to carbon dioxide by methanotrophic bacteria that
consume methane as carbon and energy source (King, 1992; Reddy
and Schipper, 1996). This fact reveals the importance of ebullition
as major processes that regulate methane emission into the atmo-
sphere. Ebullition may  account for 30–85% of the total methane
release from wetlands (Byrnes et al., 1995; Reddy and DeLaune,
2008). To capture the complicated cycle of methane, a robust model
shall include proper equations to represent all processes related to

methane production, transfer and consumption. Since methane is
generally produced in reduced soil and transferred upwards, we
present methane mass balance equations in sediment layers first
and then move upwards to water layer.

Sediment Columns:
Methane in sediment columns are simulated in a two-step

process. In step one, processes other than ebullition (diffusion,
oxidation, advective transport and plant mediated transport) are
considered to define methane concentration. If methane concentra-
tion calculated in step one exceeds a certain partial pressure, the
excess is transferred upwards to the atmosphere in form of bub-
bles (ebullition). This method is similar to approaches suggested
by Kellner et al. (2006) and Wania et al. (2010). For anaerobic
and aerobic sediment layers, the mass balance equations form as
follows:

ϕVs2
dCM2

dt
= amcϕVs2

Kin
N

Nn2 + Kin
N

k3
DCD2 + ˇM2A(CM1 − CM2)

− ϕVs2
Nn2

Nn2 + KN
k2

MCM2 + F2
CMg

+ �rf2fbsbRvD�(C∗ − CM2) (14)
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Table 2
Model parameters with fixed values (i.e. constants).

Parameter Value

amc (gr CH4/gr DOC) 0.267
�r (m root/m soil) 0.0003

�Vs1
dCM1

dt
= ˇM1 A(CMw − CM1) + ˇM2A(CM2 − CM1)

− �Vs1
Os1

Os1 + KO
k1

MCM1 + F1
CMg

+ �rf1fbsbRvD�(C∗ − CM1) (15)

if CMi > Ceq
Mi

(i = 1, 2) then{
JMi
Ebul = (CMi − Ceq

Mi
)�Vsi

�tA
and CMi = Ceq

Mi
(16)

in which

F2
CMg

=
{

−QgCM2, Qg > 0

QgCM2 − QgCM1, Qg < 0
and

F1
CDg

=
{

QgCM2 − QgCM1, Qg > 0

QgCM1 − QgCw, Qg < 0
(17)

where CM2, CM1 and Cw are methane concentration in anaerobic
sediment, aerobic sediment layer and water, respectively [ML−3];
amc is the stoichiometric yield of Methane from the anaerobic
decomposition of a gram of organic carbon during methanoge-
nesis [MM−1] (see Table 2 for constant value), ˇM2 is methane
mass exchange coefficient between aerobic and anaerobic sedi-
ment [LT−1]; ˇM1 is methane mass exchange coefficient between
aerobic sediment and water [LT−1]; k3

D is first-order reaction rate
for DOC consumption by methanogenesis in reduced soil [T−1]; k2

M
is first order reaction rate for methane consumption via denitri-
fication [T−1]; k1

M is first order reaction rate for aerobic methane
oxidation [T−1] and F1

CMg
and F2

CMg
are groundwater source/loss

for methane [MT−1]. Groundwater is more likely to be a sink for
methane rather than a source; however, some studies indicate that
methane in ground water resources can constitute a significant pool
of carbon (Barker and Fritz, 1981). Last term on right hand side of Eq.
(14) and Eq. (15) account for plant mediated transfer of methane
to atmosphere. Plant aided transfer of methane is assumed to be
a function of root density and methane concentration gradient
between soil and air (Yu et al., 1997). Following Tang et al. (2010),
C∗ is equilibrium concentration of CH4 in atmosphere [ML−3], �r is
specific conductivity of root system [LL−1] (see Table 2 for constant
value), Rv is root length density in soil [L root/M chla]; D� is diffu-
sivity of methane in air [L2T−1] (see appendix A for relationship of
D� with temperature) and C∗ is e equilibrium concentration of CH4
in atmosphere [ML−3] (see Appendix A for details).

Ceq
Mi

[ML−3] is an upper limit for concentration of dissolved
methane for sediment layer i (i = 1, 2) in which solubility of CH4 is
maximum. Such concentration for both sediment layers is obtained
by combining Bonsen solubility coefficient of methane and ideal gas
law (Wania et al., 2010):

Ceq
Mi

= pi

RT
(SB) (18)

where T is the ambient water temperature (K), R is the universal
gas constant (8.3145 m3 Pa K−1 mol−1), SB is the Bunsen solubil-
ity coefficient, defined as maximum volume of gas dissolved per
volume of liquid at given temperature and pressure (see Appendix

A for a temperature dependent relationship of SB). Pi (unit: Pa) is the
sum of atmospheric and hydrostatic pressures for sediment layer
i (pi = patm + �gz) where g is gravitational acceleration [LT−2], � is
density of water [ML−3] and z is average water height over sediment
layer [L]:

z =

⎧⎪⎨
⎪⎩

h + l1
2

i  = 1

h + l1 + l2
2

i  = 2

(19)

Excessive methane over maximum solubility is promptly cast
out of the sediment layers via ebullition such that concentration
of methane never exceeds the maximum limit. JM

Ebul
represents the

flux of methane released by bubbling at each time step [ML−2T−1].
Water Column:

ϕw
d(VwCMw)

dt
= ˛MϕwA(C∗ − CMw) + ˇM1A(CM1 − CMw) + Fw

CMg

− QoCMw − ϕwVw
Ow

Ow + KO
k1

MCMw

− ϕwVw
Kin

O

Ow + Kin
O

Nnw

Nnw + KN
k2

MCMw (20)

in which

Fw
CMg

=
{

QgCM1 Qg > 0

QgCMw Qg < 0
(21)

where, CMw is methane concentration in water [ML−3]; ˛M is
methane gas transfer velocity between water and atmosphere
[LT−1]; Fw

CDg
is groundwater source/loss for methane [MT−1]. ˛M,

also referred to as piston velocity, is empirically derived using
inert tracer gases and is usually related to wind speed over water
(Wanninkhof et al., 2009). A variety of relationships for gas transfer
velocities have been presented by Wanninkhof et al. (2009). The fol-
lowing relationship, valid for wind speeds less than 3.6 m s−1, was
selected for methane:

˛M = 0.17U10

(
ScM

600

)−0.5

(22)

where ˛M has a unit of cm h−1, ScM is Schmidt number of methane
in a given temperature (see Appendix A for details) and U10 is
wind speed at 10 meters above water (m s−1) (Riera et al., 1999;
Wanninkhof et al., 2009).

3. Model assessment

3.1. Study area and input data

The developed model was applied to a study wetland with
approximately two years of monitored flow and water quality
data, described thoroughly by Jordan et al. (2003). The study site is
a small restored wetland located on Kent Island, Maryland (Fig. 2).
During the two year sampling period, the study wetland had an
average area of 1.3 ha and drained a 14 ha watershed that was
mainly covered by crop fields (82%) and forest (18%). The study
wetland was  restored from an artificially drained cropland by
the Chesapeake Wildlife Heritage with the intention to provide
wildlife habitat and improve the quality of runoff from surrounding
crop fields. A maximum 90% of the wetland surface was covered
by emergent vegetation during growing season; this portion
dropped to a minimum of 10% during non-growing season. Water
entered the wetland through ditches draining surface runoff from
surrounding catchment and outflowed via a standpipe connected
to a 120◦ V-notch weir. The entire 1.3-ha area of the wetland was
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Fig. 2. Study wetland and its watershed outlined by dashed lines (regenerated from Jordan et al., 2003). Located on Kent Island, MD (coordinates 38◦56′20′′N, 76◦15′45′′W),
the  wetland was monitored for flow and water quality constituents over a period of 2 years.

submerged and lacked well-defined flow channels when the water
was deep enough to flow out of the weir. An impermeable layer
of clay, laid within 0.5 m of soil surface during wetland restoration
blocked groundwater exchanges and infiltration. Automated
instruments were used to measure unregulated water inflows
and to sample water entering and leaving the wetland from 8
May  1995 through 12 May  1997. Weekly (typically 5–8 days) flow
averaged nitrate N, total ammonia N, organic N, inorganic P, and
TSS and TOC (total organic carbon) concentrations in runoff were
available from Jordan et al. (2003). Details of data collection and
analysis can be found in Jordan et al. (2003).

To convert weekly average concentrations reported by Jordan
et al. (2003) into daily values, we assumed that concentrations were
constant over the given weekly periods. The dataset also contained
periods where data were missing. We  reconstructed the records
during such periods by taking averages of the last available mea-
surement before the gap and the first available measurement at the
end of the gap. Sources for other input data (precipitation, temper-
ature, etc.) used in the model could be found in Kalin et al. (2012)
who validated the N and P cycles of WetQual model on the same

study wetland. Unfortunately the dataset does not include methane
emission measurements, so we were not able to completely vali-
date the methane component of the model. Yet, parameter values
acquired from literature allowed us to perform a thorough sen-
sitivity analysis on methane production and emission from the
study wetland. Fig. 3 exhibits the hydrology of the study wetland
(inflow, outflow and average water depth) in addition to inflow
concentrations of TOC to the study wetland from May  1995 to
May  1997.

3.2. Numerical scheme verification

An explicit scheme with forward-difference approximation of
the time derivatives was  employed as a stable/efficient method
for numerical integration. The named scheme was previously
employed and explained by Hantush et al. (2012). The selected
numerical integration time step is �t  = 0.01 day, however to save
memory storage, results are aggregated to daily averages. Hantush
et al. (2012) verified the used numerical approach by compar-
ing model results with analytical solutions for simplified cases.
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Fig. 3. Top panel: solid gray line presents average water depth (m)  in study wetland; black dots show weekly inflow (Precipitation + inflow discharge aggregated over a
week)  and black solid line presents weekly outflow over the study period (m3/week). Bottom panel: Measured concentration of TOC inflow (mg/L) to wetland over the study
period.

However, in this study, we employed a secondary numerical struc-
ture to verify solutions provided by the explicit scheme. For the
secondary numerical scheme, all equations contained within in
the larger WetQual model (equations for nitrogen, phosphorus,
carbon and sediment) were solved implicitly as coupled system
of ordinary differential equations (ODEs) with central difference
approximation. The secondary solution uses a time step of same
length (�t  = 0.01 day), yet model takes about three times as long to
run. Solutions provided by both methods were compared for differ-
ent carbon constituents (DOC, LPOC, RPOC and CH4). The differences
between time series provided by both methods were indistinguish-
able for carbon pools within water and both oxidized and reduced
soil layers. The perfect match between two solutions provided con-
fidence and proof in effectiveness of the used explicit numerical
scheme.

3.3. Uncertainty and sensitivity assessment

Generalized Likelihood Uncertainty Estimation (GLUE),
introduced by Beven and Binley (1992), advocates the idea
that there are always several different models and parameter sets
for a single model that represent an observed natural process
equally well. In other words, as Beven and Freer (2001) put it,
“there are many different model structures and many different
parameter sets within a chosen model structure that may  be
behavioral or acceptable in reproducing the observed behavior
of a system”. Following this notion referred to as “Equifinality”,
model calibration is not sought in the traditional way (i.e. finding
an “optimum” parameter set), and rather, a group of parameter
sets that generate model results consistent with observations
are sought after. GLUE provides a simple uncertainty estimation
method easily applicable to non-linear complex models. GLUE
methodology is an extension to Generalized Sensitivity Analysis
(GSA), first introduced by Spear and Hornberger (1980). Both GSA
and GLUE are based upon Monte Carlo (MC) simulations. In this
study, we employed a combination of both GLUE and GSA meth-
ods to simultaneously assess model prediction uncertainty and

quantitative sensitivity to input parameters. A brief portrayal of the
GSA/GLUE methodology applied in this study is presented in Fig. 4.
To apply GSA/GLUE method, we generated 100,000 statistically
independent parameter sets, sampled randomly from previously
defined distributions. The parameter distribution and their respec-
tive upper and lower bounds (quantities) are listed in Table 3. Such
information was  extracted from literature values/tabulations (e.g.
Schnoor, 1996; Chapra, 1997; Di Toro, 2001; Reddy and DeLaune,
2008; Cerco and Cole, 1995; Ji, 2008) and authors’ judgment. To
perform MC  simulations, the model was  run 100,000 times, each
time with one set of parameters to yield an ensemble of 100,000
time series for constituent concentrations. Two  performance
criteria were used to construct a likelihood function that evaluates
the goodness of fit between model-predicted concentrations and
observed data for each MC  simulation. The likelihood function uses
a combination of Mass Balance Error (MBE) and Nash-Sutcliffe
efficiency (Ens) (Kalin and Hantush, 2006) such that:

Lk = 0.5 × (Ens + exp
(−|MBE|

100

)
(23)

The likelihood function L can theoretically range between −∞
and 1. Such a measure enables us capture goodness of fit for both
average constituent concentrations and its variation over time. Fol-
lowing the methodology presented in Fig. 4, model parameter sets
were sorted from largest to smallest respective likelihoods and
the top 1000 datasets (top 1%) with the highest likelihoods were
separated as behavioral dataset (B) from the rest of the parame-
ter sets (non-behavioral datasets, B′). Special attention was given
in selecting the cutoff limit for behavioral datasets. After special
consideration, 1% limit was recognized as effectual cutoff limit,
yet for the parameters to be selected as behavioral dataset, the
respective model performance needed to yield a Nash-Sutcliffe effi-
ciency larger than 0.7 (Ens > 0.7) and a mass balance error smaller
than 5% (|MBE| < 5%). Given that the used measures have unequal
domains, implementing such limits gives both measures more or
less equal weights in the likelihood function. A simple weighing
average method was used to yield best estimations for WetQual-C
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Fig. 4. Stepwise flowchart to GSA/GLUE methodology applied in this study.

model parameters. Behavioral parameter values were given a
weight proportional to their respective likelihood and averaged as
follows:

x′ =
∑n

i=1(eLk−1xi)∑n
i=1eLk−1

(24)

where x′ is best estimate for parameter x, Lk is the corresponding
likelihood from the ith model run of the MC  simulation, n is the
total number of MC  simulations, and xi is the generated value of
parameter x in ith parameter set.

Subsequently, quantitative sensitivity analysis was performed
using Kolmogorov-Smirnov test (Massey Jr, 1951) to reveal the
most sensitive parameters. Kolmogorov-Smirnov test is a non-
parametric test that is used to quantify a distance between the
reference cumulative distribution function (CDF) – generated from
non-behavioral parameter values or B′ – and posterior CDF of a
parameter generated from behavioral datasets (or B). If such dis-
tance – referred to as Dmax – is significant at 5% confidence level,
the parameter is declared sensitive. Prior and posterior prediction
uncertainty were next obtained by using model predictions gen-
erated respectively from the whole spectrum of model parameter
distributions (B U B′), and from behavioral parameters only (B).

For simulated constituents that do not have equivalent field
measurements (like methane in this study), a simple method for
determining most sensitive parameters quantitatively is to use
Spearman’s rank correlation coefficient (Saltelli and Sobol, 1995).
In this method the strength of monotonic relationship (linear
correlation) between the ranks of each input (parameter values)
and output (simulated constituent concentration) is measured.

Spearman’s correlation coefficient ranges from −1 to 1, and a
negative correlation between a parameters and constituent con-
centration imposes an inverse relationship between the two.

4. Results and discussion

As stated before, the measured observed data is limited to flow
and weekly averaged incoming and outflowing TOC concentration
measurements. CO2 and CH4 emissions were not monitored on the
study wetland. Thus, in the following sections, we will demonstrate
model performance, uncertainty and parameter sensitivity on TOC
export. CH4 component of the model was  examined thoroughly by
performing rank correlation sensitivity analysis. At the end, carbon
budgets for the study wetland are presented. Many of the equa-
tions presented earlier require concentration of NO3 in water and
sediment layers as input. Kalin et al. (2012) validated the nitrate
component of the WetQual model, therefore model simulated con-
centrations of NO3 were used when required.

4.1. TOC export

Simulated TOC concentrations are obtained by lumping model
generated concentrations of DOC, LPOC and RPOC at each time step.
Although model required separate inflow concentrations for LPOC,
RPOC and DOC, such information was not available for the case
study wetland; instead, the lumped amount of the three pools (TOC)
was measured at wetland inlets. We  disaggregated the sum into
three separate pools by relying on model fine tuning and informa-
tion provided by Jordan et al. (1999). Model fine tuning exposed
that best fits to observed data are achieved when roughly 89% of
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Table 3
Model parameters considered random and their best estimates based on TOC export.

Parameters Distribution (literature)a Min(a) (literature)a Max(a) (literature)a Best estimates for TOC model Best estimates for ON modelb

H (cm) Uc 5.00 50.00 23.94 21.20
	  U 1.15 1.35 1.307 1.10
kga (d−1) log-Nd 0.01 0.2 0.00143 0.0014
kgb (d−1) log-N 0.01 0.2 0.00142 0.0014
�s (g/cm3) U 1.5 2.2 2.01 2.01
vs (cm/d) log-N 0.025 25 1.779 2.34
vb (cm/d) U 0.000274 0.006575 0.0034 0.0035
ϕ  U 0.5 0.9 0.668 0.684
ϕw U 0.65 0.95 0.8768 0.865
vr (mm/yr) log-N 0.0146 8.74 0.029 0.024
aca (gC/gChl) U 15 160 86.174
faL U 0.01 0.99 0.423
faR U 0.01 0.99 0.421
faD U 0.01 0.33 0.156
fbL U 0.01 0.99 0.430
fbR U 0.04 0.99 0.412
fbD U 0.01 0.33 0.158
kL (d−1) log-N 0.000001 0.0001 0.0000135
kR (d−1) log-N 0.0000001 0.00001 0.00000127
KO (mg/lit) U 0.2 1.00 0.5453
Kin

O
(mg/lit) U 0 0.51 0.2732

KN (mg/lit) log-N 0.004 0.36 0.0519
Kin

N
(mg/lit) log-N 0.002 0.18 0.0271

k1
D

(d−1) U 0.0015 0.4 0.2174

k2
D

(d−1) U 0.001 0.16 0.1086

k3
D

(d−1) U 0.0005 0.08 0.0276

ˇD1 (cm/d) -e 0.85 109.02 27.87

k1
M

(d−1) U 0.001 0.25 –

k2
M

(d−1) U 0.001 0.08 –
fbw U 0.4 0.7 0.547
Rv log-N 0.001 10.00 –
ˇM1 (cm/d) – 0.92 131.57 –

a The selected ranges (Min, Max) and distributions for the listed parameters/coefficients are extracted from literature and expert knowledge (e.g. Schnoor, 1996; Chapra,
1997;  Di Toro, 2001; Reddy and DeLaune, 2008; Cerco and Cole, 1995; Ji, 2008). Also see Hantush et al. (2012) and Kalin et al. (2012) for list of other parameters (regarding
N  + P cycles) in WetQual model.

b Values in last column (Best estimates for ON model) are from Kalin et al. (2012).
c Uniform distribution.
d Log-normal distribution. Lower and upper bounds in log-N distributions refer to values corresponding to probabilities of 0.1% and 99.9%. Grey lines mark parameters that

are  shared with N cycling in WetQual model.
e No specific distribution assigned.

Fig. 5. Top: Summary of the K-S test and order of sensitivities based on TOC export for the whole study period. All parameters presented in figure have p-values smaller than
0.0003  thus declared sensitive. Bottom: Cumulative distribution functions (CDFs) of three most sensitive parameters. CDF of behavioral (B) and non-behavioral parameter
sets  have a wide gap between them, revealing model’s high sensitivity to that parameter.
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Fig. 6. Model generated 95% prediction interval (P.I.) from 100,000 MC  simulations versus field observations. B in figure represents behavioral datasets whereas B′ exhibits
non-behavioral datasets. Dashed line presents the median values for BUB’. To avoid gaps in figure, some weeks with missing observed data were ignored. Last data point on
the  plots, week 47 corresponds to the last week of the 2 year simulation period.

the inflowing TOC is considered as DOC. The study by Jordan et al.
(1999), which performed an experimental study on the same study
wetland between 1994 and 1995, supports this finding by stating
that DOC constituted over 75% of TOC entering the study wetland
between 1994 and 1995. Model performance showed small sen-
sitivity to how the remaining 11% of TOC inflow was  distributed
between LPOC and RPOC pools, thus the remainder was split equally
between the two pools.

4.1.1. Quantitative sensitivity analysis (K-S test)
Fig. 5 presents results of the K-S test performed on model param-

eters. 10 model parameters were identified as sensitive using the
test (top panel), in which all had small p-values (p < 0.0003). Bottom
panel of Fig. 5 shows the maximum gap (Dmax) between cumulative
distribution functions of behavioral and non-behavioral data sets
for the three top sensitive parameters. Most sensitive parameter
was identified as 	, imposing the notion that temperature plays a
significant role in regulating TOC export. Knowing that TOC pool
is mostly comprised of DOC (∼90%), and considering the repeated
effects of temperature related to DOC transfer (diffusion), origi-
nation (LPOC, RPOC hydrolysis) and conversion (aerobic/anaerobic
decomposition), it is not unexpected to see 	 as a sensitive param-
eter. Four other parameters in order of sensitivity were ˇD1, k1

D, ϕw

and k2
D. Given the fact that Dmax of first five parameters are con-

siderably close to each other (0.4 < Dmax < 0.47), we can state that
the most equally important processes governing TOC export in this
studied wetland system are diffusion of DOC, aerobic decomposi-
tion and denitrification of DOC. Similar to 	, ϕw (fourth in order of
sensitivity) does not present a specific process, rather it accounts
for plant biomass and other debris obstructing flow and flow-
accessibility in wetland water pool. The second half of sensitive

parameters (last five) include k3
D, vs, H, KO and Kin

O , conveying sec-
ondary importance of methanogenesis, settling, thickness of active
sediment layer and oxygen concentration on TOC  export.

4.1.2. Parameter estimation
Based on the averaging method explained earlier (Section 3.3),

best estimates for parameters involved in TOC export modeling
were calculated (Table 3). Presenting a single value for a parame-
ter might promote the concept of calibration and seem against the
notion of equifinality, yet our intention of presenting such values is
rather to give the reader estimates of mean parameter values. This
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Fig. 7. Dotty plot exhibiting ENS vs. MBE. The relative scatterings of dots over the
graph reveal non-independence of the two  performance criteria.
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Fig. 8. Carbon net mass exchanges and export in study wetland over year 1, year 2 and the whole simulation period. Figure presents mass of inflowing OC (kg), and OC lost
to  outflow, removal and retention processes in the study wetland. Values in parentheses are mass normalized with input loading. To account for simulation uncertainty,
absolute and normalized budget values are presented ± one standard deviation of behavioral predictions. Gaseous losses account for mass of OC turned into CO2 or CH4 via
microbial activities.

practice also allows us to compare best estimates obtained in this
study to ones obtained in Kalin et al. (2012) for organic nitrogen
(ON). These shared parameters are marked in grey in Table 3. As no
observed data was available for methane emission, best estimates

for some methane related parameters could not be obtained. In gen-
eral, calculated best estimates for shared parameters are reasonably
close to estimations obtained from ON simulations. As explained
previously, best estimate for 	 obtained for carbon export is 16%



208 A. Sharifi et al. / Ecological Modelling 263 (2013) 196– 210

larger than the value estimated for ON, expressing higher sensitiv-
ity of C cycling to temperature variation.

4.1.3. Model performance and uncertainty analysis
Fig. 6 demonstrates the comparison between field measured

TOC export (top) and outflow concentrations (bottom) with model
results, generated from the behavioral and non-behavioral MC  sim-
ulations. As declared earlier, there are periods with no observed
data (no field measurements). For purpose of presentation, we dis-
carded those absent weeks in order not to leave any breaks, thus the
horizontal axes in the figures do not reflect consecutive weeks. As
appears in Fig. 6, model performs decently in predicting TOC export
from case study wetland with relatively small uncertainty. Average
Lk, Ens and MBE  for behavioral simulations concerning TOC export
are respectively equal to 0.93, 0.87 and 0.81%. 95% prediction inter-
vals at the top panel of Fig. 6 disclose that uncertainty is highest
when TOC export is at a local peak. These peaks happen to coincide
with peaks in outflow (not shown), suggesting that highest model
uncertainty can be expected when flow is high. At low flows, when
TOC export is minimal, model has a very narrow uncertainty band
(both prior and posterior). The uncertainty for behavioral simula-
tions is relatively small. The bottom panel reveals that behavioral
model uncertainty is wider when concentration is simulated. The
median time series for MC  simulations performed in this study are
shown in Fig. 6 with dashed lines. As can be seen, the median time
series on both panels have close agreements with observations.

The defined likelihood measure used in this study benefits from
two discrete goodness of fit criteria, namely Mass Balance Error
(MBE) and Nash-Sutcliff Efficiency (Ens). Both measures offer valu-
able information on how well model can mimic  the dynamics of
carbon cycling in flooded wetlands. Ens measures model goodness
of fit by comparing both shape and volume of simulated OC export
profile versus field observations, whereas MBE  evaluates model fit-
ness based on relative percentage difference between the average
of two profiles (simulated and observed) over simulation period
(Arabi et al., 2007; Dongquan et al., 2012). Indeed, combining fit-
ness measures only becomes rewarding when each measure offers
independent information, in other words fitness measures ought
to be independent from one another. We  checked the correla-
tion between MBE  and Ens values obtained from comparing model
simulations of TOC export with field observations. The dotty plot
in Fig. 7 has Ens on vertical axis and MBE  on horizontal axis for
simulations which yielded Ens > 0.7 and |MBE| < 5%. Dots scatter all
around the plot suggest a non-existent, or rather a weak correla-
tion (R2 = 0.05, p ∼= 0) between the two measures, confirming their
independence, thus supporting the use of both fitness measures to
distinguish behavioral from non-behavioral parameter sets.

4.2. Methane emission

Methane and carbon dioxide emissions were not monitored at
the study wetland. This prohibits verifying the methane component
of the model against observed data. However, as pointed out earlier,
we scrutinized the methane module via testing its sensitivity to
model parameters.

Spearman’s rank correlation test (Table 4) revealed that thick-
ness of active sediment (H) has a high positive correlation (R = 0.76)
with amount of modeled methane emission. Methanogenesis rate
in anaerobic soil (k3

D) also appeared sensitive (R = 0.33) and posi-
tively correlated with methane emission. Third sensitive parameter
with strong positive correlation (R = 0.29) appeared as nitrate
inhibition factor (Kin

N ). This means that model allows for more
methane production when Kin

N is set to higher concentrations.
Methane component of the model did not show strong sensitivity
to other model parameters.

Table 4
Rank correlation coefficients (%) of model outputs versus model parameters for
methane emission.

Parameter Rank correlation

H 0.76
k3

D
0.33

Kin
N

0.29
ˇM1 −0.10
� −0.08
	 0.07
�w −0.05
KO 0.05
Kin

O
0.03

k1
M

−0.01
k2

M
−0.01

�s −0.01

4.3. Carbon mass exchanges and exports

Fig. 8 presents the carbon mass exchanges and exports for the
study wetland, averaged over behavioral model outputs in year 1,
year 2 and the whole simulation period (year 1 + year 2). Over the
two year study period, 3849 kg of allochthonous organic carbon was
washed into the wetland through inflow. In addition, 176 ± 88 kg of
atmospheric C was  fixed by plants over the simulation period. Over
the two year period, 1350 ± 269 kg of OC (equivalent to 35.1 ± 7.0%
of OC loading) was removed via microbial decomposition processes
and emitted to the atmosphere (Gaseous loss in Fig. 8). It should be
noted that at current state, WetQual-C does not trace CO2 trans-
port and consumption. For that reason, the reported gaseous loss
averages were obtained by adding masses of CO2 and CH4 pro-
duced from aerobic and anaerobic microbial oxidation of DOC.
Diffusion of DOC to soil layers retained 269 ± 122 kg (7.0 ± 3.2% of
OC loading) and a relatively small amount (172 ± 79 kg, equivalent
to 4.5 ± 2.1% of OC load) was  retained in the soil as a result of sett-
ling. In the second year, wetland received around 66% (1000 kg)
more OC than year 1. This could be traced back to a long dry period
at the beginning of year 1 (see Fig. 3) where hydrologic import to
the wetland was  limited. Reduced inflow discharge and loading in
year 1 allowed for higher percentage of OC retention/removal com-
pared to second year. According to Fig. 8, in year 1, equivalent to
42.8 ± 4.7% of the OC loading was  removed by the study wetland
whereas for year 2, this ratio was  33.2 ± 4.0%. By comparison Jordan
et al. (2003) measured 41% and 30% removal of TOC for years 1 and
2, respectively.

5. Summary and conclusion

In this paper, we described development and validation of
WetQual-C, a process based mathematical model for carbon cycling
in flooded wetlands. The model is an extension to WetQual model
(Hantush et al., 2012), a previously developed wetland nitrogen
and phosphorus cycling model. WetQual-C reflects various biogeo-
chemical interactions affecting C cycling in wetlands, and is capable
of simulating the dynamics of OC retention, OC export and GHG
emissions all at once. WetQual-C is coupled with other interrelated
geochemical cycles (i.e. nitrogen and oxygen) and fully reflects the
dynamics of the thin oxidized zone at wetlands soil-water inter-
face, and the oxidation–reduction reactions taking place within
that zone. A thorough sensitivity and uncertainty analysis was
performed on model components to evaluate its credibility using
field collected data from a small wetland.

Model showed a narrow behavioral uncertainty predicting TOC
export however, overall model uncertainty peaked substantially
when outflow was  high. Overall, model performed well in captur-
ing TOC export fluctuations and dynamics from the study wetland.
Model appears to be more reliable and less uncertain when it is
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predictions on TOC export is used; nevertheless, model perfor-
mance on concentration simulations was shown to be relatively
acceptable too.

The presented model in this study is a process based model, i.e.
most parameters and constants have physical meanings. Through
lab and in situ experiments, most variables could potentially be
estimated. Although the number of parameters used in WetQual-C
might appear disproportionate, if water quality is monitored (even
for a short period of time), least sensitive parameters could easily be
identified via sensitivity analysis, and fixed at their average values.
In case observed data are not available for the study wetland, model
users can still benefit from the median results of the MC  simulation
time series.

Over the period of 2 years, the study wetland removed equiva-
lent to 35.1 ± 7.0% of the OC carbon intake via OC decomposition,
and retained equivalent to 11.5 ± 5.3% mainly through DOC diffu-
sion to sediment. Thus, the study wetland appeared as a carbon sink
rather than source and proved its purpose as a relatively effective
and low cost mean for improving water quality. As WetQual-C was
intended for fresh water wetlands, it does not account for methane
removal by anaerobic oxidation processes other than denitrifica-
tion. This can be a limitation if WetQual-C is applied to salt water
wetlands where sulfate and other minerals are abundant.

Since hydrology was an input to the model, we did not consider
uncertainties related to flow measurements. Uncertainty in field
measurements (input uncertainty) was not assessed either, assum-
ing that field measurements are accurate and not too deviant. Such
additional uncertainties were ignored due to lack of information on
measurement deviations; however, if they were counted for, the
marks representing observed data (black dots in Fig. 6) would have
appeared with uncertainty bands, enabling us to compare model
uncertainty with input uncertainty.

The process of parting behavioral parameter sets from non-
behavioral ones is indeed exceedingly delicate and one should pay
particular attention to selecting right likelihood measures for such
purposes. Faulty, imprecise uncertainty and sensitivity analysis is
a very probable consequence of relying on improper likelihood
measures for testing model fitness. In this study, we defined a
new likelihood measure that combines two discrete goodness of
fit criteria, namely Mass Balance Error and Nash-Sutcliff Efficiency.
By means of a dotty plot (Fig. 7), it was revealed that there was  a
weak correlation between the two goodness of fit measures, con-
firming their independence. This independence promises that each
measure offers unique information, thus supporting the use of both
fitness measures for distinguishing behavioral from non-behavioral
parameter sets.
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Appendix A. Temperature dependence

• Arhenius equation (Chapra, 1997; Schnoor, 1996) is used to
describe dependence of several reaction rates and model vari-
ables to temperature variation:

kT = k20	T−20 (A.1)

where T is temperature expressed in ◦C; 	 is a constant temperature
coefficient; and k20 is the rate constant at the reference temperature
20 ◦C. 	 is usually greater than 1 and can be considered as a calibra-
tion coefficient. kda, kdb, kL, kR, k1

D, k2
D, k3

D, Kin
N , Kin

O , KN, KO, k1
M, k2

M
are among the variables and rates adjusted for temperature.

• Diffusivity of DOC in open water, D∗
D (unit: cm2 d−1) is adjusted

for temperature using an average form suggested by Boudreau
(1997).

D∗
D = 0.0864(9.5 + 0.3319T) (A.2)

where T is water temperature in K.
D� , defined as diffusivity of CH4 in air (m2 s−1), is adjusted for

temperature following Tang et al. (2010):

D� = 1.9×10−5×
(

T

298

)1.82
(A.3)

where T is ambient air temperature in K.

• Equation for methane free water diffusion coefficient, D∗
M (unit:

cm2 d−1) is given by (Arah and Stephen, 1998; Tang et al., 2010):

D∗
M = 1.5 × 10−9 ×

(
T

298

)
(A.4)

• Wania et al. (2010) provided a temperature dependent relation-
ship for methane Bunsen solubility coefficient (SB) by fitting a
second order polynomial to observations provided by Yamamoto
et al. (1976):

SB = 0.05708 − 0.001545T + 0.00002069T2 (A.5)

where T is water temperature in K.

• Equilibrium concentration of CH4 in atmosphere, C∗ [ML−3] can
be obtained from Henry’s law. Following equation describes C∗

when dependency of Henry’s coefficient to temperature is con-
sidered (Sander, 1999):

C∗ = 1.4 × 10−3 exp
[
−1700

(
1
T

− 1
298

)]
× pCH4 (A.6)

where C* has a unit of mol  L−1 and T is ambient air temperature
in K. pCH4 is atmospheric partial pressure of methane, assigned a
constant value of 1.7 × 10−6 atm (Wania et al., 2010).

• Following Rietta et al. (1999) and Wania et al. (2010), a third order
polynomial, fitted to observations obtained by Jähne et al. (1987),
was used to describe temperature dependency of methane
Schmidt number:

ScM = 1898 − 110.1T + 2.834T2 − 0.02791T3 (A.7)

where T is water temperature in ◦C.

Appendix B. Diffusive mass transfer coefficients

Diffusive mass transfer coefficients of ˇD and ˇM are calculated
using a two-layer approach similar to Hantush et al. (2012). Assum-
ing linear variation of concentration between layers, for substance
x, effective mass transfer coefficient between water and aerobic
sediment, ˇx1 is given by

ˇx1 = 2�w��D∗
x

��h + �wl1
, x = D, M (B.1)
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Similarly, ˇx2 (effective mass transfer coefficient between aero-
bic and anaerobic sediment layers) is

ˇx2 = 2��D∗
x

l1+l2
, x = D, M (B.2)

where, Dx
∗ is free-water diffusion coefficient for substance x

[L2T−1]; and � is tortuosity of sediment (Refer to Table 1 for def-
inition of other parameters).
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