119 research outputs found

    TOpic: rare and special cases, the real "Strange cases"

    Get PDF
    Introduction: The bladder hernia represents approximately 1-3% of all inguinal hernias, where patients aged more than 50 years have a higher incidence (10%). Many factors contribute to the development of a bladder hernia, including the presence of a urinary outlet obstruction causing chronic bladder distention, the loss of bladder tone, pericystitis, the perivesical bladder fat protrusion and the obesity

    Golgi function and dysfunction in the first COG4-deficient CDG type II patient

    Get PDF
    The conserved oligomeric Golgi (COG) complex is a hetero-octameric complex essential for normal glycosylation and intra-Golgi transport. An increasing number of congenital disorder of glycosylation type II (CDG-II) mutations are found in COG subunits indicating its importance in glycosylation. We report a new CDG-II patient harbouring a p.R729W missense mutation in COG4 combined with a submicroscopical deletion. The resulting downregulation of COG4 expression additionally affects expression or stability of other lobe A subunits. Despite this, full complex formation was maintained albeit to a lower extent as shown by glycerol gradient centrifugation. Moreover, our data indicate that subunits are present in a cytosolic pool and full complex formation assists tethering preceding membrane fusion. By extending this study to four other known COG-deficient patients, we now present the first comparative analysis on defects in transport, glycosylation and Golgi ultrastructure in these patients. The observed structural and biochemical abnormalities correlate with the severity of the mutation, with the COG4 mutant being the mildest. All together our results indicate that intact COG complexes are required to maintain Golgi dynamics and its associated functions. According to the current CDG nomenclature, this newly identified deficiency is designated CDG-IIj

    Site-specific terminal and internal labeling of RNA by poly(A) polymerase tailing and copper-catalyzed or copper-free strain-promoted click chemistry

    Get PDF
    The modification of RNA with fluorophores, affinity tags and reactive moieties is of enormous utility for studying RNA localization, structure and dynamics as well as diverse biological phenomena involving RNA as an interacting partner. Here we report a labeling approach in which the RNA of interest—of either synthetic or biological origin—is modified at its 3′-end by a poly(A) polymerase with an azido-derivatized nucleotide. The azide is later on conjugated via copper-catalyzed or strain-promoted azide–alkyne click reaction. Under optimized conditions, a single modified nucleotide of choice (A, C, G, U) containing an azide at the 2′-position can be incorporated site-specifically. We have identified ligases that tolerate the presence of a 2′-azido group at the ligation site. This azide is subsequently reacted with a fluorophore alkyne. With this stepwise approach, we are able to achieve site-specific, internal backbone-labeling of de novo synthesized RNA molecules

    An RNA toolbox for single-molecule force spectroscopy studies

    Get PDF
    Precise, controllable single-molecule force spectroscopy studies of RNA and RNA-dependent processes have recently shed new light on the dynamics and pathways of RNA folding and RNA-enzyme interactions. A crucial component of this research is the design and assembly of an appropriate RNA construct. Such a construct is typically subject to several criteria. First, single-molecule force spectroscopy techniques often require an RNA construct that is longer than the RNA molecules used for bulk biochemical studies. Next, the incorporation of modified nucleotides into the RNA construct is required for its surface immobilization. In addition, RNA constructs for single-molecule studies are commonly assembled from different single-stranded RNA molecules, demanding good control of hybridization or ligation. Finally, precautions to prevent RNase- and divalent cation-dependent RNA digestion must be taken. The rather limited selection of molecular biology tools adapted to the manipulation of RNA molecules, as well as the sensitivity of RNA to degradation, make RNA construct preparation a challenging task. We briefly illustrate the types of single-molecule force spectroscopy experiments that can be performed on RNA, and then present an overview of the toolkit of molecular biology techniques at one's disposal for the assembly of such RNA constructs. Within this context, we evaluate the molecular biology protocols in terms of their effectiveness in producing long and stable RNA constructs

    Gene-Network Analysis Identifies Susceptibility Genes Related to Glycobiology in Autism

    Get PDF
    The recent identification of copy-number variation in the human genome has opened up new avenues for the discovery of positional candidate genes underlying complex genetic disorders, especially in the field of psychiatric disease. One major challenge that remains is pinpointing the susceptibility genes in the multitude of disease-associated loci. This challenge may be tackled by reconstruction of functional gene-networks from the genes residing in these loci. We applied this approach to autism spectrum disorder (ASD), and identified the copy-number changes in the DNA of 105 ASD patients and 267 healthy individuals with Illumina Humanhap300 Beadchips. Subsequently, we used a human reconstructed gene-network, Prioritizer, to rank candidate genes in the segmental gains and losses in our autism cohort. This analysis highlighted several candidate genes already known to be mutated in cognitive and neuropsychiatric disorders, including RAI1, BRD1, and LARGE. In addition, the LARGE gene was part of a sub-network of seven genes functioning in glycobiology, present in seven copy-number changes specifically identified in autism patients with limited co-morbidity. Three of these seven copy-number changes were de novo in the patients. In autism patients with a complex phenotype and healthy controls no such sub-network was identified. An independent systematic analysis of 13 published autism susceptibility loci supports the involvement of genes related to glycobiology as we also identified the same or similar genes from those loci. Our findings suggest that the occurrence of genomic gains and losses of genes associated with glycobiology are important contributors to the development of ASD

    Pharmakologisch aktive Inhaltsstoffe aus Pilzen Abschlussbericht

    No full text
    Substances have been separated from fungi by organic solvent extraction. In the case of biologic activity, isolation was carried out mainly by fermentation and preparative chromatography. Purity and molecular structure were determined by spectroscopic methods. Numerous drugs have been found which exhibit pharmacological activity and are of interests in the fields of allergy, immunology, thrombocyte aggregation, inotropy and vascular relaxation, disordered fat-metabolism and as antiretrovitale substances. (WEN)SIGLEAvailable from TIB Hannover: F94B1720+a / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekBundesministerium fuer Forschung und Technologie (BMFT), Bonn (Germany)DEGerman
    corecore