122 research outputs found

    Arboreal Methodologies: Getting Lost to Explore the Potential of the Non-innocence of Nature

    Get PDF
    This paper recounts a workshop that took place in a polytunnel in a forest school in Sligo, North-West Ireland on a cold day in early-December. The event sought to materialize ‘arboreal methodologies’ (Osgood, 2019; Osgood & Odegard, 2022; Osgood & Axelsson, 2023) which are characterized by the enactment of feminist new materialist praxis to engage in world-making practices (Haraway, 2008) intended to unsettle recognizable tropes of biophilia that have come to frame both child and nature in narrow ways. The arboreal methodologies that participants were invited to mobilise were situated, material, affective, and involved metaphorical and material practices of ‘getting lost’. The workshop invited a sense of wonder at the ways arboreal methodologies might offer possibilities to confront human exceptionalism and wrestle with our complex, often contradictory relationships to ‘nature’. The approach taken involves methodologies without method (Koro-Ljunberg, 2016) to bring speculative, embodied encounters in the forest, together with unlikely tales of how forests work on and through us. We pursue a critical, tentacular engagement with the forest and take seriously its potential to agitate familiarity and strangeness, wonder and fear, nature and culture. In this paper we re-encounter embodied becomings-with the forest to think and sense other ways to take life in the Plantationocene (Tsing, 2015) seriously

    Repetitive, Marker-Free, Site-Specific Integration as a Novel Tool for Multiple Chromosomal Integration of DNA

    Get PDF
    We present a tool for repetitive, marker-free, site-specific integration in Lactococcus lactis, in which a nonreplicating plasmid vector (pKV6) carrying a phage attachment site (attP) can be integrated into a bacterial attachment site (attB). The novelty of the tool described here is the inclusion of a minimal bacterial attachment site (attB(min)), two mutated loxP sequences (lox66 and lox71) allowing for removal of undesirable vector elements (antibiotic resistance marker), and a counterselection marker (oroP) for selection of loxP recombination on the pKV6 vector. When transformed into L. lactis expressing the phage TP901-1 integrase, pKV6 integrates with high frequency into the chromosome, where it is flanked by attL and attR hybrid attachment sites. After expression of Cre recombinase from a plasmid that is not able to replicate in L. lactis, loxP recombinants can be selected for by using 5-fluoroorotic acid. The introduced attB(min) site can subsequently be used for a second round of integration. To examine if attP recombination was specific to the attB site, integration was performed in strains containing the attB, attL, and attR sites or the attL and attR sites only. Only attP-attB recombination was observed when all three sites were present. In the absence of the attB site, a low frequency of attP-attL recombination was observed. To demonstrate the functionality of the system, the xylose utilization genes (xylABR and xylT) from L. lactis strain KF147 were integrated into the chromosome of L. lactis strain MG1363 in two steps

    Identification of lptA, lpxE, and lpxO, Three Genes Involved in the Remodeling of Brucella Cell Envelope.

    Get PDF
    The brucellae are facultative intracellular bacteria that cause a worldwide extended zoonosis. One of the pathogenicity mechanisms of these bacteria is their ability to avoid rapid recognition by innate immunity because of a reduction of the pathogen-associated molecular pattern (PAMP) of the lipopolysaccharide (LPS), free-lipids, and other envelope molecules. We investigated the Brucella homologs of lptA, lpxE, and lpxO, three genes that in some pathogens encode enzymes that mask the LPS PAMP by upsetting the core-lipid A charge/hydrophobic balance. Brucella lptA, which encodes a putative ethanolamine transferase, carries a frame-shift in B. abortus but not in other Brucella spp. and phylogenetic neighbors like the opportunistic pathogen Ochrobactrum anthropi. Consistent with the genomic evidence, a B. melitensis lptA mutant lacked lipid A-linked ethanolamine and displayed increased sensitivity to polymyxin B (a surrogate of innate immunity bactericidal peptides), while B. abortus carrying B. melitensis lptA displayed increased resistance. Brucella lpxE encodes a putative phosphatase acting on lipid A or on a free-lipid that is highly conserved in all brucellae and O. anthropi. Although we found no evidence of lipid A dephosphorylation, a B. abortus lpxE mutant showed increased polymyxin B sensitivity, suggesting the existence of a hitherto unidentified free-lipid involved in bactericidal peptide resistance. Gene lpxO putatively encoding an acyl hydroxylase carries a frame-shift in all brucellae except B. microti and is intact in O. anthropi. Free-lipid analysis revealed that lpxO corresponded to olsC, the gene coding for the ornithine lipid (OL) acyl hydroxylase active in O. anthropi and B. microti, while B. abortus carrying the olsC of O. anthropi and B. microti synthesized hydroxylated OLs. Interestingly, mutants in lptA, lpxE, or olsC were not attenuated in dendritic cells or mice. This lack of an obvious effect on virulence together with the presence of the intact homolog genes in O. anthropi and B. microti but not in other brucellae suggests that LptA, LpxE, or OL β-hydroxylase do not significantly alter the PAMP properties of Brucella LPS and free-lipids and are therefore not positively selected during the adaptation to intracellular life

    The identification of wadB, a new glycosyltransferase gene, confirms the branched structure and the role in virulence of the lipopolysaccharide core of Brucella abortus

    Get PDF
    Brucellosis is a worldwide extended zoonosis caused by Brucella spp. These gram-negative bacteria are not readily detected by innate immunity, a virulence-related property largely linked to their surface lipopolysaccharide (LPS). The role of the LPS lipid A and O-polysaccharide in virulence is well known. Moreover, mutation of the glycosyltransferase gene wadC of Brucella abortus, although not affecting O-polysaccharide assembly onto the lipid-A core section causes a core oligosaccharide defect that increases recognition by innate immunity. Here, we report on a second gene (wadB) encoding a LPS core glycosyltransferase not involved in the assembly of the O-polysaccharide-linked core section. As compared to wild-type B. abortus, a wadB mutant was sensitive to bactericidal peptides and non-immune serum, and was attenuated in mice and dendritic cells. These observations show that as WadC, WadB is also involved in the assembly of a branch of Brucella LPS core and support the concept that this LPS section is a virulence-related structure

    Occurrence of L-iduronic acid and putative D-glucuronyl C5-epimerases in prokaryotes

    Get PDF
    Glycosaminoglycans (GAGs) are polysaccharides that are typically present in a wide diversity of animal tissue. Most common GAGs are well-characterized and pharmaceutical applications exist for many of these compounds, e.g. heparin and hyaluronan. In addition, also bacterial glycosaminoglycan-like structures exist. Some of these bacterial GAGs have been characterized, but until now no bacterial GAG has been found that possesses the modifications that are characteristic for many of the animal GAGs such as sulfation and C5-epimerization. Nevertheless, the latter conversion may also occur in bacterial and archaeal GAGs, as some prokaryotic polysaccharides have been demonstrated to contain L-iduronic acid. However, experimental evidence for the enzymatic synthesis of L-iduronic acid in prokaryotes is as yet lacking. We therefore performed an in silico screen for D-glucuronyl C5-epimerases in prokaryotes. Multiple candidate C5-epimerases were found, suggesting that many more microorganisms are likely to exist possessing an L-iduronic acid residue as constituent of their cell wall polysaccharides

    The Structural Diversity of Carbohydrate Antigens of Selected Gram-Negative Marine Bacteria

    Get PDF
    Marine microorganisms have evolved for millions of years to survive in the environments characterized by one or more extreme physical or chemical parameters, e.g., high pressure, low temperature or high salinity. Marine bacteria have the ability to produce a range of biologically active molecules, such as antibiotics, toxins and antitoxins, antitumor and antimicrobial agents, and as a result, they have been a topic of research interest for many years. Among these biologically active molecules, the carbohydrate antigens, lipopolysaccharides (LPSs, O-antigens) found in cell walls of Gram-negative marine bacteria, show great potential as candidates in the development of drugs to prevent septic shock due to their low virulence. The structural diversity of LPSs is thought to be a reflection of the ability for these bacteria to adapt to an array of habitats, protecting the cell from being compromised by exposure to harsh environmental stress factors. Over the last few years, the variety of structures of core oligosaccharides and O-specific polysaccharides from LPSs of marine microrganisms has been discovered. In this review, we discuss the most recently encountered structures that have been identified from bacteria belonging to the genera Aeromonas, Alteromonas, Idiomarina, Microbulbifer, Pseudoalteromonas, Plesiomonas and Shewanella of the Gammaproteobacteria phylum; Sulfitobacter and Loktanella of the Alphaproteobactera phylum and to the genera Arenibacter, Cellulophaga, Chryseobacterium, Flavobacterium, Flexibacter of the Cytophaga-Flavobacterium-Bacteroides phylum. Particular attention is paid to the particular chemical features of the LPSs, such as the monosaccharide type, non-sugar substituents and phosphate groups, together with some of the typifying traits of LPSs obtained from marine bacteria. A possible correlation is then made between such features and the environmental adaptations undertaken by marine bacteria

    Host immunity in the protective response to nasal immunization with a pneumococcal antigen associated to live and heat-killed Lactobacillus casei

    Get PDF
    Background: At present, available pneumococcal vaccines have failed to eradicate infections caused by S. pneumoniae. Search for effective vaccine continues and some serotype independent pneumococcal proteins are considered as candidates for the design of new vaccines, especially a mucosal vaccine, since pneumococci enter the body through mucosal surfaces. Selection of the appropriate adjuvant is important for mucosal vaccines, and lactic acid bacteria (LAB) with immunostimulant properties are promissory candidates. In this work, we assessed the adjuvant effect of a probiotic strain, Lactobacillus casei (L. casei), when nasally administered with a pneumococcal antigen (pneumococcal protective protein A: PppA) for the prevention of pneumococcal infection. Adjuvanticity of both live (LcV) and heat-killed (LcM) was evaluated and humoral and cellular antigen-specific immune response was assessed in mucosal and systemic compartments. The potential mechanisms induced by nasal immunization were discussed.Results: Nasal immunization of young mice with PppA+LcV and PppA+LcM induced anti-PppA IgA and IgG antibodies in mucosal and systemic compartments and levels of these specific antibodies remained high even at day 45 after the 3rd Immunization (3rd I). These results were correlated with IL-4 induction by the mixture of antigen plus LcV and LcM. Also, PppA+Lc (V and M) induced stimulation of Th1 and Th17 cells involved in the defence against pneumococci. The protection against pneumococcal respiratory challenge at day 30 after the 3rd I showed that PppA+LcV and PppA+LcM immunizations significantly reduced pathogen counts in nasal lavages while prventing their passage into lung and blood. Survival of mice immunized with the co-application of PppA plus LcV and LcM was significantly higher than in mice immunized with PppA alone and control mice when intraperitoneal challenge was performed. No significant differences between the treatments involving LcV and LcM were found.Conclusions: Live and heat-killed L. casei enhanced the antigen-specific immune response when administered nasally with a pneumococcal antigen. Considering the potential risk associated with live bacteria, the design of a nasal vaccine based on pneumococcal antigens and heat-killed L. casei emerges as a safe and effective strategy for the prevention of pneumococcal infections and opens new possibilities of application of dead LAB as adjuvants in vaccine formulations against other pathogens.Fil: Vintiñi, Elisa Ofelia. Universidad Nacional de Tucumán. Facultad de Agronomía y Zootecnia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: Medina, Marcela Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; Argentina. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia; Argentin

    UK bioenergy innovation priorities: Making expectations credible in state-industry arenas

    Get PDF
    AbstractThe UK government has promoted bioenergy for several policy aims. Future expectations for bioenergy innovation encompass various pathways and their potential benefits. Some pathways have been relatively favoured by specific state-industry arrangements, which serve as ‘arenas of expectations’. Through these arrangements, some expectations have been made more credible, thus justifying and directing resource allocation. Conversely, to incentivise private-sector investment, government has sought credibility for its commitment to bioenergy innovation. These dual efforts illustrate the reciprocal character of promise-requirement cycles, whereby promises are turned into requirements for state sponsors as well as for innovators.Collective expectations have been shaped by close exchanges between state bodies, industry and experts. As promoters build collective expectations, their credibility has been linked with UK economic and environmental aims. When encountering technical difficulties or delays in earlier expectations, pathways and their benefits have been broadened, especially through new arenas—as grounds to allocate considerable state investment. Thus the concept ‘arenas of expectations’ helps to explain how some pathways gain favour as innovation priorities

    Contextualising school readiness in South Africa: Stakeholders’ perspectives

    Get PDF
    Preparing children for mainstream school occurs in systems that act as an overarching context. The perspectives of stakeholders influence how they prepare children for mainstream education.The aim of this study was to develop an understanding of the contextual factors that affect school readiness as identified by stakeholders. School readiness was conceptualised as a function of contextual influences and connections between individual and systemic factors enabling the child to benefit from the curriculum
    corecore