24 research outputs found

    Morphology stabilization strategies for small-molecule bulk heterojunction photovoltaics

    Get PDF
    The greater crystallinity of solution-processed small-molecule organic semiconductors, compared to their polymer counterparts, renders the bulk heterojunction (BHJ) more susceptible to phase separation under thermal stress, decreasing device performance. Here we demonstrate and compare strategies to stabilize the donor: acceptor BHJ in DPP(TBFu)(2):PC61BM solar cells using molecular additives designed to either afford compatiblization (CP) of the bulk heterojunction, or to in situ link (ISL) the components using a functional azide group. Both additives were found to stop phase segregation of the BHJ under thermal stress. At 5 wt% loading the ISL additive prevents phase segregation, while altering the azide reaction mechanism by using UV-induced linking versus thermal induced linking was found to significantly affect the device performance. Including 5 wt% of the CP additive slowed phase segregation and devices retained 80% of their optimum performance after 3000 min of thermal treatment at 110 degrees C (compared to 50% with the control). The CP additive at 10 wt% changed drastically the kinetics of phase segregation leading to devices with no decrease in performance over 3000 min thermal treatment. Thin film morphology characterization together with photoluminescence and impedance spectroscopy give further insight into the performance differences between the additives. These results reinforce the conclusion that the compatiblization method is the most promising strategy to engineer highly-efficient thermally-stable organic photovoltaics based on solution-processed small molecules

    Optimization of the Asymmetric Intermediate Reflector Morphology for High Stabilized Efficiency Thin n-i-p Micromorph Solar Cells

    Get PDF
    This paper focuses on our latest progress in n-i-p thinmicromorph solar-cell fabrication using textured back reflectors and asymmetric intermediate reflectors, both deposited by lowpressure chemical vapor deposition of zinc oxide.We then present microcrystalline bottom cells with high crystallinity, which yield excellent long wavelength response for relatively thin absorber thickness. In a 1.5-μm-thick μc-Si:H single-junction n-i-p solar cell, we thus obtain a short-circuit current density of 25.9 mA·cm−2 , resulting in an initial cell efficiency of 9.1%. Subsequently, the roughness of the intermediate reflector layer is adapted for the growth of high-performance amorphous silicon (a-Si:H) top cells. Combining bottom cells with high current, an optimal intermediate reflector morphology and a 0.22-μm-thick a-Si:H top cell, we reach high initial open-circuit voltages of 1.45 V, and we obtain a stabilized cell with an efficiency of 11.1%, which is our best stable efficiency for n-i-p solar cells

    The Fidelity of Synaptonemal Complex Assembly Is Regulated by a Signaling Mechanism that Controls Early Meiotic Progression

    Get PDF
    Proper chromosome segregation during meiosis requires the assembly of the synaptonemal complex (SC) between homologous chromosomes. However, the SC structure itself is indifferent to homology, and poorly understood mechanisms that depend on conserved HORMA-domain proteins prevent ectopic SC assembly. Although HORMA-domain proteins are thought to regulate SC assembly as intrinsic components of meiotic chromosomes, here we uncover a key role for nuclear soluble HORMA-domain protein HTP-1 in the quality control of SC assembly. We show that a mutant form of HTP-1 impaired in chromosome loading provides functionality of an HTP-1-dependent checkpoint that delays exit from homology search-competent stages until all homolog pairs are linked by the SC. Bypassing of this regulatory mechanism results in premature meiotic progression and licensing of homology-independent SC assembly. These findings identify nuclear soluble HTP-1 as a regulator of early meiotic progression, suggesting parallels with the mode of action of Mad2 in the spindle assembly checkpoint.This work was supported by a BBSRC David Phillips fellowship and an MRC core-funded grant to E.M.-P

    On the Interplay Between Microstructure and Interfaces in High-Efficiency Microcrystalline Silicon Solar Cells

    Get PDF
    This paper gives new insights into the role of both the microstructure and the interfaces in microcrystalline silicon (μc- Si) single-junction solar cells. A 3-D tomographic reconstruction of a μc-Si solar cell reveals the 2-D nature of the porous zones, which can be present within the absorber layer. Tomography thus appears as a valuable technique to provide insights into the μc- Si microstructure. Variable illumination measurements enable to study the negative impact of such porous zones on solar cells performance. The influence of such defectivematerial can bemitigated by suitable cell design, as discussed here. Finally, a hydrogen plasma cell post-deposition treatment is demonstrated to improve solar cells performance, especially on rough superstrates, enabling us to reach an outstanding 10.9% efficiency microcrystalline singlejunction solar cell

    Subhaloes gone Notts: subhaloes as tracers of the dark matter halo shape

    Get PDF
    We study the shapes of subhalo distributions from four dark-matter-only simulations of Milky Way-type haloes. Comparing the shapes derived from the subhalo distributions at high resolution to those of the underlying dark matter fields, we find the former to be more triaxial if the analysis is restricted to massive subhaloes. For three of the four analysed haloes, the increased triaxiality of the distributions of massive subhaloes can be explained by a systematic effect caused by the low number of objects. Subhaloes of the fourth halo show indications for anisotropic accretion via their strong triaxial distribution and orbit alignment with respect to the dark matter field. These results are independent of the employed subhalo finder. Comparing the shape of the observed Milky Way satellite distribution to those of high-resolution subhalo samples from simulations, we find agreement for samples of bright satellites, but significant deviations if faint satellites are included in the analysis. These deviations might result from observational incompleteness

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    Quantification of Valleys of Randomly Textured Substrates as a Function of Opening Angle: Correlation to the Defect Density in Intrinsic nc-Si:H

    No full text
    Optical and electrical properties of hydrogenated nanocrystalline silicon (nc-Si:H) solar cells are strongly influenced by the morphology of underlying substrates. By texturing the substrates, the photogenerated current of nc-Si:H solar cells can increase due to enhanced light scattering. These textured substrates are, however, often incompatible with defect-less nc-Si:H growth resulting in lower Vo. and FF. In this study we investigate the correlation between the substrate morphology, the nc-Si:H solar-cell performance, and the defect density in the intrinsic layer of the solar cells (i-nc-Si:H). Statistical surface parameters representing the substrate morphology do not show a strong correlation with the solar-cell parameters. Thus, we first quantify the line density of potentially defective valleys of randomly textured ZnO substrates where the opening angle is smaller than 130 degrees (rho(<130)). This rho(<130) is subsequently compared with the solar-cell performance and the defect density of i-nc-Si:H (rho(defect)), which is obtained by fitting external photovoltaic parameters from experimental results and simulations. We confirm that when rho(<130) increases the V-oc and FF significantly drops. It is also observed that rho(defect) increases following a power law dependence of rho(<130). This result is attributed to more frequently formed defective regions for substrates having higher rho(<130)

    Strategies for Doped Nanocrystalline Silicon Integration in Silicon Heterojunction Solar Cells

    No full text
    Carrier collection in silicon heterojunction (SHJ) solar cells is usually achieved by doped amorphous silicon layers of a few nanometers, deposited at opposite sides of the crystalline silicon wafer. These layers are often defect-rich, resulting in modest doping efficiencies, parasitic optical absorption when applied at the front of solar cells, and high contact resistivities with the adjacent transparent electrodes. Their substitution by equally thin doped nanocrystalline silicon layers has often been argued to resolve these drawbacks. However, low-temperature deposition of highly crystalline doped layers of such thickness on amorphous surfaces demands sophisticated deposition engineering. In this paper, we review and discuss different strategies to facilitate the nucleation of nanocrystalline silicon layers and assess their compatibility with SHJ solar cell fabrication. We also implement the obtained layers into devices, yielding solar cells with fill factor values of over 79% and efficiencies of over 21.1%, clearly underlining the promise this material holds for SHJ solar cell applications
    corecore