289 research outputs found

    Toxicogenomic analysis incorporating operon-transcriptional coupling and toxicant concentration-expression response: analysis of MX-treated Salmonella

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Deficiencies in microarray technology cause unwanted variation in the hybridization signal, obscuring the true measurements of intracellular transcript levels. Here we describe a general method that can improve microarray analysis of toxicant-exposed cells that uses the intrinsic power of transcriptional coupling and toxicant concentration-expression response data. To illustrate this approach, we characterized changes in global gene expression induced in <it>Salmonella typhimurium </it>TA100 by 3-chloro-4-(dichloromethyl)-5-hydroxy-2(<it>5H</it>)-furanone (MX), the primary mutagen in chlorinated drinking water. We used the co-expression of genes within an operon and the monotonic increases or decreases in gene expression relative to increasing toxicant concentration to augment our identification of differentially expressed genes beyond Bayesian-t analysis.</p> <p>Results</p> <p>Operon analysis increased the number of altered genes by 95% from the list identified by a Bayesian t-test of control to the highest concentration of MX. Monotonic analysis added 46% more genes. A functional analysis of the resulting 448 differentially expressed genes yielded functional changes beyond what would be expected from only the mutagenic properties of MX. In addition to gene-expression changes in DNA-damage response, MX induced changes in expression of genes involved in membrane transport and porphyrin metabolism, among other biological processes. The disruption of porphyrin metabolism might be attributable to the structural similarity of MX, which is a chlorinated furanone, to ligands indigenous to the porphyrin metabolism pathway. Interestingly, our results indicate that the <it>lexA </it>regulon in <it>Salmonella</it>, which partially mediates the response to DNA damage, may contain only 60% of the genes present in this regulon in <it>E. coli</it>. In addition, <it>nanH </it>was found to be highly induced by MX and contains a putative <it>lexA </it>regulatory motif in its regulatory region, suggesting that it may be regulated by <it>lexA</it>.</p> <p>Conclusion</p> <p>Operon and monotonic analyses improved the determination of differentially expressed genes beyond that of Bayesian-t analysis, showing that MX alters cellular metabolism involving pathways other than DNA damage. Because co-expression of similarly functioning genes also occurs in eukaryotes, this method has general applicability for improving analysis of toxicogenomic data.</p

    2014 Bone and Muscle Risks Standing Review Panel

    Get PDF
    The 2014 Bone and Muscle Risks Standing Review Panel (from here on referred to as the SRP) met for a site visit in Houston, TX on December 17 - 18, 2014. The SRP reviewed the updated research plans for the Risk of Impaired Performance Due to Reduced Muscle Mass, Strength and Endurance (Muscle Risk) and the Risk of Reduced Physical Performance Capabilities Due to Reduced Aerobic Capacity (Aerobic Risk). The SRP also received a status update on the Risk of Bone Fracture (Bone Risk), the Risk of Early Onset Osteoporosis Due To Spaceflight (Osteo Risk), the Risk of Intervertebral Disc Damage (IVD Risk), and the Risk of Renal Stone Formation (Renal Risk)

    Osteopontin is a novel downstream target of SOX9 with diagnostic implications for progression of liver fibrosis in humans

    Get PDF
    Osteopontin (OPN) is an important component of the extracellular matrix (ECM), which promotes liver fibrosis and has been described as a biomarker for its severity. Previously, we have demonstrated that Sex-determining region Y-box 9 (SOX9) is ectopically expressed during activation of hepatic stellate cells (HSC) when it is responsible for the production of type 1 collagen, which causes scar formation in liver fibrosis. Here, we demonstrate that SOX9 regulates OPN. During normal development and in the mature liver, SOX9 and OPN are coexpressed in the biliary duct. In rodent and human models of fibrosis, both proteins were increased and colocalized to fibrotic regions in vivo and in culture-activated HSCs. SOX9 bound a conserved upstream region of the OPN gene, and abrogation of Sox9 in HSCs significantly decreased OPN production. Hedgehog (Hh) signaling has previously been shown to regulate OPN expression directly by glioblastoma (GLI) 1. Our data indicate that in models of liver fibrosis, Hh signaling more likely acts through SOX9 to modulate OPN. In contrast to Gli2 and Gli3, Gli1 is sparse in HSCs and is not increased upon activation. Furthermore, reduction of GLI2, but not GLI3, decreased the expression of both SOX9 and OPN, whereas overexpressing SOX9 or constitutively active GLI2 could rescue the antagonistic effects of cyclopamine on OPN expression. Conclusion: These data reinforce SOX9, downstream of Hh signaling, as a core factor mediating the expression of ECM components involved in liver fibrosis. Understanding the role and regulation of SOX9 during liver fibrosis will provide insight into its potential modulation as an antifibrotic therapy or as a means of identifying potential ECM targets, similar to OPN, as biomarkers of fibrosis. (HEPATOLOGY 2012;56:1108–1116

    Cognitive Diversity in a Healthy Aging Cohort: Cross-Domain Cognition in the Cam-CAN Project.

    Get PDF
    Objective: Studies of "healthy" cognitive aging often focus on a limited set of measures that decline with age. The current study argues that defining and supporting healthy cognition requires understanding diverse cognitive performance across the lifespan. Method: Data from the Cambridge Centre for Aging and Neuroscience (Cam-CAN) cohort was examined across a range of cognitive domains. Performance was related to lifestyle including education, social engagement, and enrichment activities. Results: Results indicate variable relationships between cognition and age (positive, negative, or no relationship). Principal components analysis indicated maintained cognitive diversity across the adult lifespan, and that cognition-lifestyle relationships differed by age and domain. Discussion: Our findings support a view of normal cognitive aging as a lifelong developmental process with diverse relationships between cognition, lifestyle, and age. This reinforces the need for large-scale studies of cognitive aging to include a wider range of both ages and cognitive tasks.The Cambridge Centre for Aging and Neuroscience (Cam-CAN) research was supported by the Biotechnology and Biological Sciences Research Council (grant number BB/H008217/1)

    TGF-b2 induction regulates invasiveness of theileria-transformed leukocytes and disease susceptibility

    Get PDF
    Theileria parasites invade and transform bovine leukocytes causing either East Coast fever (T. parva), or tropical theileriosis (T. annulata). Susceptible animals usually die within weeks of infection, but indigenous infected cattle show markedly reduced pathology, suggesting that host genetic factors may cause disease susceptibility. Attenuated live vaccines are widely used to control tropical theileriosis and attenuation is associated with reduced invasiveness of infected macrophages in vitro. Disease pathogenesis is therefore linked to aggressive invasiveness, rather than uncontrolled proliferation of Theileria-infected leukocytes. We show that the invasive potential of Theileria-transformed leukocytes involves TGF-b signalling. Attenuated live vaccine lines express reduced TGF-b2 and their invasiveness can be rescued with exogenous TGF-b. Importantly, infected macrophages from disease susceptible Holstein-Friesian (HF) cows express more TGF-b2 and traverse Matrigel with great efficiency compared to those from disease-resistant Sahiwal cattle. Thus, TGF-b2 levels correlate with disease susceptibility. Using fluorescence and time-lapse video microscopy we show that Theileria-infected, disease-susceptible HF macrophages exhibit increased actin dynamics in their lamellipodia and podosomal adhesion structures and develop more membrane blebs. TGF-b2-associated invasiveness in HF macrophages has a transcription-independent element that relies on cytoskeleton remodelling via activation of Rho kinase (ROCK). We propose that a TGF-b autocrine loop confers an amoeboid-like motility on Theileria-infected leukocytes, which combines with MMP-dependent motility to drive invasiveness and virulence

    A risk prediction model for the assessment and triage of women with hypertensive disorders of pregnancy in low-resourced settings: the miniPIERS (Pre-eclampsia Integrated Estimate of RiSk) multi-country prospective cohort study.

    Get PDF
    BACKGROUND: Pre-eclampsia/eclampsia are leading causes of maternal mortality and morbidity, particularly in low- and middle- income countries (LMICs). We developed the miniPIERS risk prediction model to provide a simple, evidence-based tool to identify pregnant women in LMICs at increased risk of death or major hypertensive-related complications. METHODS AND FINDINGS: From 1 July 2008 to 31 March 2012, in five LMICs, data were collected prospectively on 2,081 women with any hypertensive disorder of pregnancy admitted to a participating centre. Candidate predictors collected within 24 hours of admission were entered into a step-wise backward elimination logistic regression model to predict a composite adverse maternal outcome within 48 hours of admission. Model internal validation was accomplished by bootstrapping and external validation was completed using data from 1,300 women in the Pre-eclampsia Integrated Estimate of RiSk (fullPIERS) dataset. Predictive performance was assessed for calibration, discrimination, and stratification capacity. The final miniPIERS model included: parity (nulliparous versus multiparous); gestational age on admission; headache/visual disturbances; chest pain/dyspnoea; vaginal bleeding with abdominal pain; systolic blood pressure; and dipstick proteinuria. The miniPIERS model was well-calibrated and had an area under the receiver operating characteristic curve (AUC ROC) of 0.768 (95% CI 0.735-0.801) with an average optimism of 0.037. External validation AUC ROC was 0.713 (95% CI 0.658-0.768). A predicted probability ≥25% to define a positive test classified women with 85.5% accuracy. Limitations of this study include the composite outcome and the broad inclusion criteria of any hypertensive disorder of pregnancy. This broad approach was used to optimize model generalizability. CONCLUSIONS: The miniPIERS model shows reasonable ability to identify women at increased risk of adverse maternal outcomes associated with the hypertensive disorders of pregnancy. It could be used in LMICs to identify women who would benefit most from interventions such as magnesium sulphate, antihypertensives, or transportation to a higher level of care

    Meta-analysis of genome-wide studies identifies MEF2C SNPs associated with bone mineral density at forearm

    Get PDF
    Background: Forearm fractures affect 1.7 million individuals worldwide each year and most occur earlier in life than hip fractures. While the heritability of forearm bone mineral density (BMD) and fracture is high, their genetic determinants are largely unknown. Aim: To identify genetic variants associated with forearm BMD and forearm fractures. Methods: BMD at distal radius, measured by dualenergy x-ray absorptiometry, was tested for association with common genetic variants. We conducted a metaanalysis of genome-wide association studies for BMD in 5866 subjects of European descent and then selected the variants for replication in 715 Mexican American samples. Gene-based association was carried out to supplement the single-nucleotide polymorphism (SNP) association test. We then tested the BMD-associated SNPs for association with forearm fracture in 2023 cases and 3740 controls. Results: We found that five SNPs in the introns of MEF2C were associated with forearm BMD at a genome-wide significance level (

    Bostonia: The Boston University Alumni Magazine. Volume 8

    Full text link
    Founded in 1900, Bostonia magazine is Boston University's main alumni publication, which covers alumni and student life, as well as university activities, events, and programs

    Untreated PKU patients without intellectual disability: what do they teach us?

    Get PDF
    Phenylketonuria (PKU) management is aimed at preventing neurocognitive and psychosocial dysfunction by keeping plasma phenylalanine concentrations within the recommended target range. It can be questioned, however, whether universal plasma phenylalanine target levels would result in optimal neurocognitive outcomes for all patients, as similar plasma phenylalanine concentrations do not seem to have the same consequences to the brain for each PKU individual. To better understand the inter-individual differences in brain vulnerability to high plasma phenylalanine concentrations, we aimed to identify untreated and/or late-diagnosed PKU patients with near-normal outcome, despite high plasma phenylalanine concentrations, who are still alive. In total, we identified 16 such cases. While intellectual functioning in these patients was relatively unaffected, they often did present other neurological, psychological, and behavioral problems. Thereby, these "unusual" PKU patients show that the classical symptomatology of untreated or late-treated PKU may have to be rewritten. Moreover, these cases show that a lack of intellectual dysfunction despite high plasma phenylalanine concentrations does not necessarily imply that these high phenylalanine concentrations have not been toxic to the brain. Also, these cases may suggest that different mechanisms are involved in PKU pathophysiology, of which the relative importance seems to differ between patients and possibly also with increasing age. Further research should aim to better distinguish PKU patients with respect to their cerebral effects to high plasma phenylalanine concentrations
    • …
    corecore