Journal of MEDICAL GENETICS

Meta-Analysis of Genome-Wide Studies Identifies MEF2C SNPs Associated with Bone Mineral Density at Forearm

Journal:	Journal of Medical Genetics
Manuscript ID:	jmedgenet-2012-101287.R2
Article Type:	Short Report
Date Submitted by the Author:	n/a
Complete List of Authors:	Zheng, Hou-Feng; McGill University, Human Genetics Duncan, Emma; University of Queensland, Human Genetics Yerges-Armstrong, Laura; University of Maryland School of Medicine, Medicine Eriksson, Joel; Medicine, Sahlgrenska Academy, University of Gothenburg, Center for Bone and Arthritis Research Bergström, Ulrica; Umeå University, Surgical and Perioperative Sciences Leo, Paul; University of Queensland, Human Genetics Leslie, William; University of Manitoba, Internal Medicine Goltzman, David; McGill University, Medicine, Blangero, John; Texas Biomedical Research Institute, Genetics Hanley, David; University of Calgary, Medicine, Carless, Melanie; Texas Biomedical Research Institute, Genetics Spector, Tim; St Thomass Hospital Streeten, Elizabeth; University of Maryland School of Medicine, Medicine Lorentzon, Mattias; Medicine, Sahlgrenska Academy, University of Gothenburg, Center for Bone and Arthritis Research Brown, Matthew; University of Queensland Diamantina Institute, Princess Alexandra Hospital Pettersson, Ulrika; Umeå University, Pharmacology and Neuroscience Ohlsson, Claes; Medicine, Sahlgrenska Academy, University of Gothenburg, Center for Bone and Arthritis Research Mitchell, Braxton; University of Maryland Richards, Brent; Department of Medicine, McGill University,
Keywords:	Complex traits, Genome-wide, Genetic epidemiology

SCHOLARONE[™] Manuscripts

This is a post-print version of the following article: Zheng, Hou-Feng, Duncan, Emma L., Yerges-Armstrong, Laura M., Eriksson, Joel, Bergström, Ulrica, Leo, Paul J., Leslie, William D., Goltzman, David, Blangero, John, Hanley, David A., Carless, Melanie A., Streeten, Elizabeth A., Lorentzon, Mattias, Brown, Matthew A., Spector, Tim D., Pettersson-Kymmer, Ulrika, Ohlsson, Claes, Mitchell, Braxton D. and Richards, J. Brent (2013) Meta-analysis of genomewide studies identifies MEF2C SNPs associated with bone mineral density at forearm. Journal of Medical Genetics, 50 7: 473-478.

1			
2			
3 1	1	Meta	-Analysis of Genome-Wide Studies Identifies MEF2C SNPs Associated with
4 5			
6	2	Bone	Mineral Density at Forearm
7	-		
8	3	Hould	Fong 7hong1# Emma Duncan ^{2,3} Laura M. Vorgos-Armstrong4 Jool Eriksson ⁵
9	3	Illuio	Peng Zheng-#, Ehnna Duncan-, Laura M. Terges-Armstrong, Joer Enksson,
10	4	Denia	¹ Dergströme, Paur J. Leo ² , Winnahl D. Lesne ² , David Goltzman ³ , John Diangero ² ,
12	5	Davic	A Haniey ¹⁰ , Melanie A. Carless ⁹ , Elizabeth A. Streeten ^{4,11} , Mattias Lorentzon ³ ,
13	6	Matth	iew A. Brown ² , 11m D. Spector ¹² , Ulrika Pettersson-Kymmer ^{13,14} , Claes
14	7	Ohlss	on ⁵ , Braxton D. Mitchell ⁴ , J. Brent Richards ^{1,12} #
15	8		
16	9		
17	10	1.	Departments of Medicine, Human Genetics, Epidemiology and Biostatistics,
18	11		Lady Davis Institute, Jewish General Hospital, McGill University, Montreal,
19	12		Quebec, H3T 1E2 Canada.
20 21	13	2.	Human Genetics Group, University of Oueensland Diamantina Institute.
22	14		University of Oueensland, Princess Alexandra Hospital, Brisbane, 4102,
23	15		Australia
24	16	3	Endocrinology Royal Brichane and Women's Hospital Brichane 4029
25	10	Ј.	Australia
26	1/	1	Australia.
27	18	4.	Department of Medicine; Division of Endocrinology, Diabetes and Nutrition,
28	19	_	University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
29 30	20	5.	Center for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska
31	21		Academy, University of Gothenburg, Gothenburg, 41345, Sweden.
32	22	6.	Surgical and Perioperative Sciences, Umeå University, Umeå, S-90187,
33	23		Sweden.
34	24	7.	Department of Internal Medicine, University of Manitoba, Winnipeg, Canada.
35	25	8.	Department of Medicine, McGill University, Montreal, Canada.
36	26	9.	Department of Genetics, Texas Biomedical Research Institute, San Antonio,
3/ 20	27		USA.
30	28	10.	Department of Medicine, University of Calgary, Calgary, AB, Canada,
40	29	11	Geriatric Research and Education Clinical Center (GRECC) Veterans
41	30		Administration Medical Center Baltimore MD 21201 USA
42	31	12	Twin Research and Canatic Enidemiology King's College London London
43	22	14.	United Kingdom
44	32	10	Dharmaaalagu and Nauraagian as Umas University Umas C 00107 Sweden
45 46	ວວ ວ∢	13.	Phalmacology and Neuroscience, United University, United, 5-90107, Sweden.
40 17	34	14.	Public Health and Clinical Medicine, Omea Unviersity, Omea, S-90187,
48	35		Sweden.
49	36		
50	37	#Cor	respondence should be addressed to: Dr. Hou-Feng Zheng
51	28	(hou	zhang@mail.mcgill.ca).or I. Brant Richards (brant richards@mcgill.ca)
52	50	(nou.	zneng@man.megm.eaj of j. brene kienarus (brenerienarus@megm.ea)
53	39	3755	Côte Ste-Catherine Road, MONTREAL Québec H3T 1E2 Canada.
04 55	40	D	ing title. MEEDC is appreciated with former DMD
56	40	киnn	ing the: MEF2C is associated with forearm BIVID
57			
58			
59			

2	
3	
4	
5	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
22	
~~	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
26	
30	
37	
38	
39	
40	
<u>4</u> 1	
10	
42	
43	
44	
45	
46	
47	
48	
40 40	
49 50	
50	
51	
52	
53	
54	
55	
55	
30	
5/	
58	
59	
60	

1	ABSTRACT
2	Background: Forearm fractures affect 1.7 million individuals worldwide each year and most
3	occur earlier in life than hip fractures. While the heritability of forearm bone mineral density
4	(BMD) and fracture is high, their genetic determinants are largely unknown.
5	Aim: To identify genetic variants associated with forearm BMD and forearm fractures.
6	Methods: BMD at distal radius measured by dual-energy X-ray absorptiometry was tested for
7	association with common genetic variants. We conducted a meta-analysis of genome-wide
8	association studies for BMD in 5,866 subjects of European descent and then selected variants for
9	replication in 715 Mexican American samples. Gene-based association was carried out to
10	supplement the single-SNP test. We then tested the BMD-associated SNPs for association with
11	forearm fracture in 2,023 cases and 3,740 controls.
12	Results: We found that five SNPs in the introns of <i>MEF2C</i> were associated with forearm BMD at
13	a genome-wide significance level (P<5x10 ⁻⁸) in meta-analysis (lead SNP, rs11951031[T] -0.20
14	standard deviations per allele, $P=9.01 \times 10^{-9}$). The gene-based association test suggested an
15	association between MEF2C and forearm BMD (P=0.003). The association between MEF2C
16	variants and risk of fracture did not achieve statistical significance (SNP rs12521522[A]: odds
17	ratio = 1.14 [95% CI: 0.92-1.35], P = 0.14). Meta analysis also revealed two genome-wide
18	suggestive loci at CTNNA2 and 6q23.2.
19	Conclusion: These findings demonstrate that variants at <i>MEF2C</i> were associated with forearm
20	BMD thereby implicating this gene in the determination of bone mineral density at forearm.
21	
22	Keywords: Genome-wide association study; Osteoporosis; Bone mineral density; Forearm;
23	Fracture; Meta-analysis; Gene-base; Conditional analysis.
24	

Journal of Medical Genetics

1 INTRODUCTION

Osteoporosis is a common disease characterized by low bone mineral density (BMD), resulting in
an increased risk of fragility fracture[1]. BMD, the best clinical indicator of fracture risk, is a highly
heritable trait, with heritability estimates of 60%–85%[2]. Forearm fractures are among the most
common fractures, affecting 1.7 million individuals per year[3], and have heritability of 54%[4].

Genome-wide association studies (GWAS) have identified more than 10 genes associated with BMD from the Wnt signaling pathway, which is crucial to bone biology [5, 6]. We recently conducted two separate GWAS meta-analyses for cortical bone thickness and forearm BMD, and reported WNT16, which encodes an important Wnt factor, to be associated with BMD, cortical bone thickness, bone strength and osteoporotic fracture risk[7]. In the current study, we extended our study on forearm BMD by adding an additional GWAS cohort with BMD data, increasing our meta-analysis sample size for six GWAS cohorts to 5,866 European-descended samples. In this new analysis we detected an additional locus associated with forearm BMD and then replicated the association in an independent cohort comprising 715 Mexican American samples. We additionally conducted a gene-based association test to more fully characterize association signals from the meta-analysis. Finally, we selected the most compelling SNPs from these analyses and genotyped them in three cohorts comprising 2,023 forearm fracture cases and 3,740 controls to test their effects on the risk of forearm fracture.

21 MATERIALS AND METHODS

The GWAS and fracture samples have been described previously[7]. Briefly, the six GWAS
cohorts include the Amish Family Osteoporosis Study (AFOS), the Gothenburg Osteoporosis and
Obesity Determinants (GOOD) study, the Anglo-Australasian Osteoporosis Genetics Consortium
(AOGC) study, TwinsUK1, TwinsUK23 and TwinsUK4, comprising a total of 5,866 Europeandescended samples. <u>The TwinsUK4 cohort, which includes 194 subjects phenotyped for forearm</u>
<u>BMD, was not included in our previous GWAS [7], nor was the Mexican American replication</u>
<u>sample (see below).</u> Genotyping of the TwinUK4 was done on the Illumina HumanHap650K

platform. The quality control criteria are similar to TwinsUK23 described in Zheng et al [7]. Imputation was performed using the IMPUTE2 [8] based on HapMap2, release 22. BMD at distal radius was measured in all cohorts by dual-energy X-ray absorptiometry following standard manufacturer protocols. The fracture cohorts include AOGC, the Umea Fracture and Osteoporosis (UFO) study, the Canadian Multi-Centre Osteoporosis study (CaMos) and the Manitoba-McGill (ManMc) fracture study, comprising 2,023 forearm fracture cases and 3,740 controls. Forearm fracture was defined as fractures resulting from low trauma (such as a fall from standing height) occurring at the wrist, ulna, radius, and forearm, as well as Colles' fractures. There are no overlapping samples between BMD and fracture. De-novo genotyping of SNP rs12521522 in fracture cases and controls was undertaken at Kbiosciences (England). All study participants provided informed written consent. Approval by local institutional review boards was obtained in all studies. The replication cohort is from the San Antonio Family Osteoporosis Study (SAFOS), which was designed as a study of cardiovascular and bone health in a representative sample of multigenerational Mexican American families[9]. Probands aged 40-60 years of age were recruited from low-income neighborhoods in San Antonio, Texas regardless of health status. The SAFOS samples were genotyped using the Illumina 550 HumanHap Beadchip by the Texas Biomedical Research Institute as part of the San Antonio Family Heart Study. Association analysis was conducted using the SOLAR software program[10] to account for family structure. To minimize the risk of false associations due to stratification in this admixed sample, we performed a principal component analysis using ~ one million genotypes to capture the total genetic variation in the sample as previously described [11]. We then included as covariates into the association analysis the first four principal components. A total of 715 samples with forearm BMD data were analyzed in the current study; the mean age, height and weight of these study subjects was 42 ± 14.7 (year), 161.9 ± 9.2 (centimeter) and 81.6 ± 21.5 (kilogram), respectively. Statistical methods for the meta-analysis were similar to those used in the previous analysis[7].

Page 5 of 18

Journal of Medical Genetics

1	
2	
3	
1	
4 5	
5	
0	
1	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
12	
12	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
50	
54	
55	
56	
57	
58	
59	

60

1	Briefly, all cohorts independently conducted the association analysis of SNP allele dosage with
2	standardized BMD residuals, while adjusting for age, age ² , gender, height, weight and population
3	substructure where applicable, for center of recruitment (AOGC), and for family structure in
4	cohorts with family members. A meta-analysis of the GWAS results was conducted using the
5	GWAMA software (Genome-Wide Association Meta Analysis)
6	(http://www.well.ox.ac.uk/gwama/)[12] with fixed-effects inverse variance meta-analysis[13].
7	
8	We next performed a gene-based association test following the procedure proposed by Liu et al
9	as implemented in the software VEGAS[14], a computationally feasible method for analyzing
10	meta-analytic results. We included all SNPs within genes (including ± 50 kb from the 5' and 3'
11	UTR) with a maximum of 1x10 ⁶ simulations to account for the linkage disequilibrium (LD)
12	structure among SNPs within a gene. Conditional analysis was conducted using GCTA
13	0.93.9[15], an approximate conditional analysis method using summary-level statistics from the
14	meta-analysis and LD corrections between SNPs estimated from a reference sample[16]. We
15	used TwinsUK23 as the reference sample to calculate the LD information of SNPs, due to its
16	size.
17	
18	SNPs that were associated with BMD were assessed for association with fracture risk using
19	logistic regression models adjusted for age, gender, height and weight. We used CatS[17] for
20	power calculation.
21	
22	RESULTS
23	GWAS analyses were performed in the six cohorts for forearm BMD applying cohort-specific
24	genomic controls. The cohort-specific results were meta-analyzed using fixed effects meta-
25	analysis, again applying the overall meta-analytic genomic control (Overall λ = 1.012, and 1.051
26	for AFOS; 0.990 for AOGC; 1.014 for GOOD; 1.0089 for TwinsUK1; 1.0037 for TwinsUK23; 1.170
27	for TwinsUK4). A quantile-quantile plot of the observed P values showed a clear deviation at the
28	tail of the distribution from the null distribution (the distribution expected if there were no

2	
3	
4	
5	
6	
7	
8	
å	
9	
10	
11	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
22	
23	
2/	
24	
20	
26	
27	
28	
29	
30	
31	
22	
32	
33	
34	
35	
36	
37	
38	
30	
40	
40	
41	
42	
43	
44	
45	
46	
۰. 47	
 10	
40	
49	
50	
51	
52	
53	
54	
55	
55	
20	
5/	
58	
59	
60	

5

association) even after 648 SNPs were removed from the *WNT16* region, which was reported
previously [7]. This suggests that the observed P values, particularly the ones within the tail of the
distribution, are smaller than those expected by chance and probably reflect true genetic
association (Supplementary Figure S1).

6 Genome-wide associations with forearm BMD were observed at two loci, WNT16 (7q31) and 7 MEF2C (5q14.3). At WNT16, significant associations were observed with 30 SNPs (3.26x10⁻ 8 ⁸>P>1.87x10⁻¹³), replicating an association we have previously observed [7] (**Supplementary** 9 Figure S2). At MEF2C, five of eight SNPs were significantly associated with forearm BMD, with the other three SNPs showing suggestive levels of association (4.55x10⁻⁷>P>3.15x10⁻⁸) on meta-10 11 analysis (Supplementary Figure S2 and Figure 1). The most significantly associated SNP was 12 rs12521522 (-0.20 standard deviations [SD] per A allele, P = 3.15x10⁻⁸) (**Table1**). These eight 13 SNPs were highly correlated with each other (HapMap CEU LD calculation: 1> R² >0.85). Using 14 association results from the GWAS meta-analysis we next sought to determine if there were any 15 gene-based signals arising when GWAS summary statistics were collapsed across the genes 16 [14]; The gene-based test results support the single-SNP findings of the meta-analysis, with 17 collapsing P-values of 0.003 for gene MEF2C. 18 19 Meta analysis also revealed two genome-wide suggestive loci at CTNNA2 and 6q23.2, including

20 34 genome-wide suggestive SNPs in the region of *CTNNA2* ($1.73x10^{-6} < P < 5x10^{-6}$) and 10 21 genome-wide suggestive SNPs at 6q23.2 ($5.52x10^{-7} < P < 3.76x10^{-6}$) (**Supplementary Figure S2**).

22

We attempted an *in silico* replication on the eight SNPs associated with forearm BMD at *MEF2C* in the Mexican American population. Four of the eight SNPs were monomorphic in the replication
 population. Of the remaining four polymorphic SNPs, three had effect sizes in the same direction

- as, and even slightly larger than, those observed in the meta-analysis, including two SNPs for
- 27 which the associations in Mexican Americans achieved statistical significance at the 0.05
- threshold (rs12522630 and rs17494872) (Table 1). In the joint analysis of discovery and

Journal of Medical Genetics

1	replication populations, evidence of association improved for the three SNPs, with the most
2	significant association at rs11951031 (-0.20 SD per T allele, $P = 9.01 \times 10^{-9}$) (Table 1 and Figure
3	2).
4	
5	In order to investigate whether the variants showing association with forearm BMD also have an
6	effect on the risk of forearm fracture, we tested SNP rs12521522 for de novo genotyping in
7	samples with forearm fracture and their controls. In the meta-analysis for fracture, comprising
8	2,023 forearm fracture cases and 3,740 controls, from 3 cohorts. The association between
9	rs12521522 and risk of fracture did not achieve statistical significance (Odds Ratio [OR] = 1.14
10	[95% CI: 0.92-1.35], P = 0.14) (Table 1). The fracture associations for the other 7 SNPs at the
11	MEF2C locus were tested in silico in the much smaller AOGC fracture GWAS cohort in 155 cases
12	and 1672 controls and the results showed no evidence of association (Table 1).
13	
14	Because SNP rs1366594, which locates upstream of MEF2C gene (Figure 1), has been
15	previously reported to be associated with femoral neck (FN) BMD [18], we evaluated whether this
16	SNP or signals from this region could explain the observed association with forearm BMD. First,
17	the minor allele frequency (MAF) of forearm BMD-associated SNP in our study (rs11951031,
18	MAF=0.06) was considerably lower than that of FN BMD-associated SNP (rs1366594,
19	MAF=0.45), and the effect size of rs11951031 (-0.20 SD per T allele) was much larger than
20	rs1366594 (-0.085 SD per C allele). Second, these two SNPs are only very weakly correlated
21	with each other (HapMap CEU LD calculation: R-square =0.087). Third, after conditioning on the
22	effect of rs1366594, the effect size for rs11951031 on forearm BMD decreased from -0.20 SD per
23	T allele (4.16x10 ⁻⁸) to -0.18 SD per T allele (1.35x10 ⁻⁶). Therefore, the SNPs we have found to be
24	associated with forearm BMD are distinct from those found previously [18].
25	
26	DISCUSSION

4		
5		
6		
7		
8		
9		
1	0	
1	1	
1	2	
1	3	
1	4	
1	5	
1	6	
1	7	
1	8	
1	9	
2	0	
2	1	
2	2	
2	3	
2	4	
2	5	
2	6	
2	7	
2	8	
2	9	
3	0	
3	1	
3	2	
3	3	
3	4	
3	5	
3	6	
2 2	7	
2 2	י פ	
2 2	a	
⊿ ∧	0	
4 1	1	
4 1	י ר	
4 1	2	
4 1	л Л	
+ ⁄	+ 5	
4 1	6	
+ /	0 7	
4 1	0	
4 1	0	
4	9	
0 5	∪ ₄	
0 F	ו ר	
0 F	2	
0 Г	ۍ ۸	
о г	4	
5 7	5	
5	6	
5	7	
5	8	
5	9	
6	٥	

	1	We identified gene MEF2C,	a member of the Wnt signaling pathway, to be associated with
--	---	---------------------------	--

2 forearm BMD in meta-analysis in a collection of 6,584 individuals. In addition, we observed a non-

3 significant trend towards risk of fracture at this locus.

The Wnt/β-catenin signaling pathway is known to play an important role in the regulation of bone
mass and bone turnover[19]. *MEF2C* is an important member of this pathway[5, 6], and, in fact, in
the large GEFOS Consortium, a SNP (rs1366594) located upstream from this gene, was
associated with FN BMD, although not with lumbar spine BMD[18], <u>We report in this study that</u>
intronic variants in *MEF2C* are associated with forearm BMD, a clinically distinct phenotype from

10 that at femoral neck.

11

4

- 12 Our finding adds three novel pieces to the genetics of BMD puzzle. First, bone at the forearm is
- 13 <u>structurally different than bone at the femoral neck insofar as forearm bone contains a much</u>
- 14 higher proportion of cortical bone. BMD at both sites predicts fracture at their respective
- 15 <u>anatomical sites better than at other sites. Second, the associated variants for forearm BMD</u>
- 16 appear to be quite distinct from the variants associated with FN BMD. Not only are they located
- 17 over ~237kb from each other (Figure 1), but they have very different allele frequencies (0.06 vs
- 18 0.45) and very different effect sizes (-0.20 SD vs -0.06 SD), and they are not correlated.
- 19 Moreover, conditional analyses reveal that the effect of rs11951031 on forearm BMD are largely
- 20 independent of any effect of rs1366594. We postulate that these common variants are likely
 - 21 independent signals that have different independent effects on the two BMD phenotypes. It is
 - 22 also possible that both associations arise from several rare causal variants on the same
 - 23 <u>haplotype background [20], however, this hypothesis will likely be tested as more sequencing</u>
 - 24 <u>studies emerge for BMD. These observations also suggest that the same variants have</u>
 - 25 <u>differential effects on different types of bone.</u>

- 27 We did not observe a statistically significant association of *MEF2C* SNP (rs12521522) with
- 28 osteoporotic fracture in the current study. Our sample size (2,023 cases and 3,740 controls)

Journal of Medical Genetics

2		
3 4	1	provided 44% power to detect an odds ratio of 1.14 for a risk allele having a frequency of 0.06.
5 6	2	However, the direction of effect of the alleles that decreased BMD was associated with in
7	3	increase in fracture risk across the study cohorts. Given the sample size for fracture in this study,
9 10	4	these results should be interpreted cautiously and require further replication. Additionally,
11	5	rs1366594, which was reported in Rivadeneira et al [18] showed no evidence of association with
12 13	6	forearm fracture neither in the AOGC in silico analysis (155 cases and 1672 controls, P=0.27).
14 15	7	
10	8 9	In summary, our data provides first evidence that intronic variants at the MEF2C locus, a member
18	10	of the Wnt pathway, are associated with forearm BMD. These findings expand our understanding
20 21	11	of the genetic determinants of forearm BMD, a clinically relevant skeletal site.
22	12	
24 25	13	Acknowledgements
26 27	14	We are extremely grateful to all the individuals who took part in this study. We thank the
28 29	15	Wellcome Trust Sanger Institute for generating the TwinsUK GWA data. This publication is the
30 31	16	work of all authors and they will serve as guarantors for the contents of this paper.
32 33	17	
34 35	18	Contributors
36 37	19	Conceived and designed the experiments: H-F Zheng, JB Richards. Analyzed the data: H-F
38 39	20	Zheng, E Duncan, LM Yerges-Armstrong, Joel Eriksson, PJ Leo, U Bergström, EA Streeten, BD
40 41	21	Mitchell, JB Richards. Contribute reagents/materials/phenotype: WD Leslie, D Goltzman, T
42 43	22	Spector, John Blangero, M Lorentzon, C Ohlsson, U Pettersson-Kymmer, Melanie Carless, DA
44 45	23	Hanley, Matthew Brown. Wrote the paper: H-F Zheng, BD Mitchell, JB Richards. Revised the
46 47	24	manuscript: all authors.
48 49	25	
50 51	26	Funding
52 53	27	The funders had no role in study design, data collection and analysis, decision to publish, or
54 55	28	preparation of the manuscript. AFOS: NIH research grants R01 AG18728, R01HL088119,
50 57 59	29	R01AR046838, U01 HL084756, P30DK072488 and F32AR059469; AOGC: The Anglo-
59 60		

Journal of Medical Genetics

1	Australasian Osteoporosis Genetics Consortium was funded by a project grant from the National
2	Health and Medical Research Council (NHMRC) (Australia) (grant reference 511132), and a
3	NHMRC-European Union Collaborative grant. MAB was funded by an NHMRC Senior Principal
4	Research Fellowship (grant reference APP1024879). CaMos/ManMc: This work was supported
5	by grants from the Canadian Foundation for Innovation, the Canadian Institutes of Health
6	Research (CIHR), Fonds de la recherche en sante du Quebec and the Jewish General Hospital,
7	Ministere Développement Économique, Innovation et Exportation du Québec, Fonds de la
8	Recherche en Santé du Québec, Lady Davis Institute of Medical Research and the Dairy Farmers
9	of Canada; GOOD: Financial support was received from the Swedish Research Council, the
10	Swedish Foundation for Strategic Research, the ALF/LUA research grant in Gothenburg, the
11	Lundberg Foundation, the Torsten and Ragnar Söderberg's Foundation, the Västra Götaland
12	Foundation, the Göteborg Medical Society, the Novo Nordisk foundation, and the European
13	Commission grant HEALTH-F2-2008-201865-GEFOS. SAFOS: NIH research grant R01
14	AR43351. TwinsUK: NIHR Biomedical Research Centre (grant to Guys' and St. Thomas'
15	Hospitals and King's College London); the Chronic Disease Research Foundation, Wellcome
16	Trust; National Institutes of Health Research, National Health and Medical Research Council
17	(Australia). UFO: The Umeå Fracture and Osteoporosis Study (UFO) is supported by BBMRI.se,
18	the Swedish Research Council (K20006-72X-20155013), the Swedish Sports Research Council
19	(87/06), the Swedish Society of Medicine, the Kempe-Foundation (JCK-1021), and by grants from
20	the Medical Faculty of Umeå Unviersity (ALFVLL:968:22-2005, ALFVLL-937-2006, ALFVLL
21	223:11-2007, ALFVLL-78151-2009) and from the county council of Västerbotten
22	(Spjutspetsanslag VLL:159:33-2007)
23	
24	Competing interests None
25	Patient Consent Written informed consent was obtained from all study participants.
26	Ethics approval Approval by local institutional review boards was obtained in all studies.
27	Provenance and peer review Not commissioned; externally peer reviewed.

2		
3	1	References
4	1	
5	0	
6	Z	1 Consensus development conference: diagnosis, prophylaxis, and treatment of
7	3	osteoporosis. <i>The American journal of medicine</i> 1993; 94 (6):646-50.
8	4	2 Ng MY, Sham PC, Paterson AD, Chan V, Kung AW. Effect of environmental
9	5	factors and gender on the heritability of hone mineral density and hone size
10	5	Annals of human genetics 200(: 70 (Dt 4),420,20
11	0	Annuis of numun genetics 2006; 70 (Pt 4):428-38.
12	7	3 Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability
13	8	associated with osteoporotic fractures. Osteoporosis international
14	9	2006.17(12).1726-33
15	10	Androw T Antioniados I. Scurrah KI Macgrogor AI Spector TD Dick of wrist
16	10	4 Andrew I, Andoniades L, Scultan KJ, Macgregol AJ, Spectol TD. KISK of Wilst
17	11	fracture in women is heritable and is influenced by genes that are largely
18	12	independent of those influencing BMD. <i>Journal of bone and mineral research</i>
19	13	2005: 20 (1):67-74.
20	14	5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
21	17	5 Zheng hi, Spector TD, Richards JD. Insights into the genetics of osteoporosis
22	15	from recent genome-wide association studies. Expert reviews in molecular
23	16	<i>medicine</i> 2011; 13 :e28.
24	17	6 Richards JB, Zheng HF, Spector TD. Genetics of osteoporosis from genome-
25	18	wide association studies: advances and challenges <i>Nature reviews Genetics</i>
26	10	2012. 12 (0).E76 00
27	19	2012, 13(0), 370, 000.
28	20	7 Zheng HF, Tobias JH, Duncan E, Evans DM, Eriksson J, Paternoster L, Yerges-
29	21	Armstrong LM, Lehtimaki T, Bergstrom U, Kahonen M, Leo PJ, Raitakari O,
30	22	Laaksonen M. Nicholson GC. Viikari I. Ladouceur M. Lvytikainen LP. Medina-
31	23	Comez C Rivadeneira E Prince RL Sievanen H Leslie WD Mellstrom D
32	23	Eismen IA Messevene Clartic C. Caltanan D. Hanlas DA. Janas C. St Davrasin D.
33	24	EISman JA, Moverare-Skrtic S, Goltzman D, Hanley DA, Jones G, St Pourcain B,
34	25	Xiao Y, Timpson NJ, Smith GD, Reid IR, Ring <mark>SM,</mark> Sambrook PN, Karlsson M,
35	26	Dennison EM, Kemp JP, Danoy P, Sayers A, Wilson SG, Nethander M,
36	27	McCloskey E. Vandennut L. Eastell R. Liu I. Spector T. Mitchell BD. Streeten
37	28	FA Brommago P. Dottorsson-Kummor II. Brown MA. Ohlsson C. Bichards IB
38	20	LA, DIOIIIIIage R, I ettersson Rynnier O, Drown MA, Onisson C, Richards JD,
39	29	Lorentzon M. WNI 16 Influences Bone Mineral Density, Cortical Bone
40	30	Thickness, Bone Strength, and Osteoporotic Fracture Risk. <i>PLoS genetics</i>
41	31	2012; 8 (7):e1002745.
42	32	8 Howie BN Donnelly P Marchini I A flexible and accurate genotype
43	22	imputation method for the next generation of geneme wide association
44	33	iniputation method for the next generation of genome-wide association
45	34	studies. PLoS genetics 2009;5(6):e1000529.
46	35	9 Mitchell BD, Kammerer CM, Schneider JL, Perez R, Bauer RL. Genetic and
40	36	environmental determinants of bone mineral density in Mexican Americans:
48	37	results from the San Antonio Family Osteonorosis Study <i>Bone</i>
40	20	
50	38	2003; 33 (5):839-46.
51	39	10 Almasy L, Blangero J. Multipoint quantitative-trait linkage analysis in general
52	40	pedigrees. American journal of human genetics 1998; 62 (5):1198-211.
53	41	11 Ouillen EE, Rainwater DL, Dver TD, Carless MA, Curran IE, Johnson MP
54	1.2	Coring HH Cole SA Rutherford S Macchuer IW Moses FK Rlangero I Almasu
55	40	I Mahamar MC Narral and a stations of a station in 11
56	43	L, Mananey MC. Novel associations of nonstructural Loci with paraoxonase
57	44	activity. <i>Journal of lipids</i> 2012; 2012 :189681.
58		
50		
60		
00		

3	1	12	Magi R, Morris AP. GWAMA: software for genome-wide association meta-
4	2		analysis. BMC bioinformatics 2010: 11 :288.
5	2	13	Pereira TV Patsonoulos NA Salanti & Joannidis IP Discovery properties of
0	J 4	15	referrar v, racsopoulos IVA, salanci d, roannius jr. Discovery properties of
1	4		genome-wide association signals from cumulatively combined data sets.
0	5		<i>American journal of epidemiology</i> 2009; 170 (10):1197-206.
9	6	14	Liu JZ, McRae AF, Nyholt DR, Medland SE, Wray NR, Brown KM, Hayward NK,
10	7		Montgomery GW, Visscher PM, Martin NG, Macgregor S, A versatile gene-
10	ß		based test for genome-wide association studies. American journal of human
12	0		a sentine 2010 07(1) 120 4
13	9		genetics $2010; 87(1):139-45$.
14	10	15	Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide
16	11		complex trait analysis. <i>American journal of human genetics</i> 2011; 88 (1):76-
17	12		82.
18	13	16	Yang L Ferreira T. Morris AP. Medland SE. Madden PA. Heath AC. Martin NG.
19	11	10	Montgomery CW Weedon MN Loos RI Frayling TM McCarthy MI
20	15		Hirach and IN Coddend ME Viscolar DM Conditional and isint multiple CND
21	15		HIRSCHOOTH JN, GODDATO ME, VISSCHEF PM. CONDITIONAL AND JOINT MULTIPLE-SNP
22	16		analysis of GWAS summary statistics identifies additional variants
23	17		influencing complex traits. <i>Nature genetics</i> 2012; 44 (4):369-75.
24	18	17	Skol AD, Scott LJ, Abecasis GR, Boehnke M. Joint analysis is more efficient
25	19		than replication-based analysis for two-stage genome-wide association
26	20		studies Nature genetics 2006.38(2):209-13
27	20	10	Dividencing E. Sturkeredettin II. Estrada V. Helldersson DV. Hey VII. Disharda
28	21	10	Rivadellella F, Stylkal Subtli U, ESti ada K, Halldol SSOII DV, HSU FH, Richards
29	22		JB, Zillikens MC, Kavvoura FK, Amin N, Aulchenko YS, Cupples LA, Deloukas P,
30	23		Demissie S, Grundberg E, Hofman A, Kong A, Karasik D, van Meurs JB, Oostra
31	24		B, Pastinen T, Pols HA, Sigurdsson G, Soranzo N, Thorleifsson G,
32	25		Thorsteinsdottir U. Williams FM, Wilson SG, Zhou Y, Ralston SH, van Duijn
33	26		CM Spector T Kiel DP Stefansson K Joannidis IP Hitterlinden AG Twenty
34	20		hono minoral donsity loci identified by large scale meta analysis of genome
35	27		bolle-initieral-density loci luentified by large-scale ineta-analysis of genome-
30	28		wide association studies. <i>Nature genetics</i> 2009;41(11):1199-206.
31 20	29	19	Monroe DG, McGee-Lawrence ME, Oursler MJ, Westendorf JJ. Update on Wnt
30 20	30		signaling in bone cell biology and bone disease. <i>Gene</i> 2011.
39 40	31	20	Dickson SP, Wang K, Krantz I, Hakonarson H, Goldstein DB. Rare variants
40 41	32		create synthetic genome-wide associations. <i>PLoS biology</i>
42	22		$2010\cdot\mathbf{g}(1)\cdot\mathbf{a}(1)\mathbf{a}(0)$
43	24		2010,0(1).010002.)4.
44	34		
45	35		
46			
47			
48			
49			
50			
51			
52			
53			
54			
55			
00 57			
57 58			
50			
60			

Figure legend:

Table 1: Association results of forearm BMD meta-analysis and fracture of the top SNPs.

						GWAS Meta analysis				SAFOS				alysis*		Fracture analysis#	
9CHR	SNP	POSITION	EA	NEA	EAF	BETA	SE	Р	EAF	BETA	SE	Р	BETA	SE	Р	OR	Р
10 11 ⁵	rs17558256	88119209	С	Т	0.06	-0.20	0.04	3.15x10 ⁻⁸	0	NA	NA	NA	NA	NA	NA	1.20 (0.82-1.43)	0.33
12 ⁵	rs11958689	88142609	G	С	0.06	-0.20	0.04	4.16x10 ⁻⁸	0.08	0.04	0.11	0.72	-0.18	0.03	3.35x10 ⁻⁷	1.21 (0.83-1.45)	0.31
135	rs12521522	88148517	А	Т	0.06	-0.20	0.04	3.15x10 ⁻⁸	0	NA	NA	NA	NA	NA	NA	1.14 (0.92-1.35)	0.14
14 ₅	rs11955542	88148984	т	С	0.06	-0.20	0.04	3.15x10 ⁻⁸	0	NA	NA	NA	NA	NA	NA	1.20 (0.82-1.43)	0.33
16 ⁵	rs11951031	88174487	т	С	0.06	-0.20	0.04	4.16x10 ⁻⁸	0.04	-0.23	0.14	0.10	-0.20	0.04	9.01x10 ⁻⁹	1.20 (0.81-1.45)	0.33
175	rs12515983	88189831	А	Т	0.06	-0.20	0.04	6.12x10 ⁻⁸	0	NA	NA	NA	NA	NA	NA	1.19 (0.81-1.44)	0.34
18 ₅	rs12522630	88224123	А	G	0.07	-0.18	0.04	3.35x10 ⁻⁷	0.04	-0.29	0.14	0.04	-0.19	0.03	5.19x10 ⁻⁸	1.25 (0.83-1.49)	0.22
20 ⁵	rs17494872	88228915	А	G	0.07	-0.18	0.04	4.55x10 ⁻⁷	0.04	-0.29	0.14	0.04	-0.19	0.03	6.82x10 ⁻⁸	1.25 (0.83-1.49)	0.23

EA: effect allele; NEA: non-effect allele; EAF: effect allele frequency;

NA: not applicable; these SNPs were not polymorphic in Mexican Americans (rs17558256, rs12521522, rs11955542 and rs12515983).

* Combined results of GWAS meta-analysis and SAFOS replication study.

SNP rs12521522 was tested in 2,023 cases and 3,740 controls; the other 7 SNPs were tested in 155 cases and 1672 controls. teu mi iou

Boldface indicated the genome wide significant SNPs.

Figure 1. Scatter plots of the observed association with forearm BMD in the 800kb wide region around rs12521522 in MEF2C locus. The P values of SNPs (shown as -log10 values in y-axis, from the genome-wide single-marker association analysis using the linear regression model) are plotted against their map position (b36) (x-axis). The color of each SNP spot reflects its r2 with rs12521522. SNPs rs11951031 and rs12521522 are in perfect LD, and rs1366594 is ~237kb away from rs11951031. 254x177mm (150 x 150 DPI)

http://mc.manuscriptcentral.com/jmedgenet

http://mc.manuscriptcentral.com/jmedgenet

Supplementary Figure S1

Quantile-quantile plots of the observed P values versus the expected P values for association. The dots in blue were plotted on the entire set of SNPs, whereas the dots in red were obtained after removing WNT16 region SNPs (+/- 400KB either side of rs2908004). The black line was the distribution expected if there were no association.

Journal of Medical Genetics

Supplementary Figure S2

Manhattan plot for GWAS Meta-Analysis of Forearm BMD. Genome-wide P values (-log10 P) of the linear regression analysis plotted against position on each chromosome.

