156 research outputs found
Developing assessment policy and evaluating practice: a case study of the introduction of a new marking scheme
Assessing the impact of the threatened crucian carp (Carassius carassius) on pond invertebrate diversity: A comparison of conventional and molecular tools
Fishes stocked for recreation and angling can damage freshwater habitats and negatively impact biodiversity. The pond-associated crucian carp (Carassius carassius) is
rare across Europe and is stocked for conservation management in England, but its
impacts on pond biota are understudied. Freshwater invertebrates contribute substantially to aquatic biodiversity, encompassing many rare and endemic species, but
their small size and high abundance complicate their assessment. Practitioners have
employed sweep-netting and kick-sampling with microscopy (morphotaxonomy),
but specimen size/quality and experience can bias identification. DNA and environmental DNA (eDNA) metabarcoding offer alternative means of invertebrate assessment. We compared invertebrate diversity in ponds (N = 18) with and without
crucian carp using morphotaxonomic identification, DNA metabarcoding and eDNA
metabarcoding. Five 2 L water samples and 3 min sweep-net samples were collected
at each pond. Inventories produced by morphotaxonomic identification of netted
samples, DNA metabarcoding of bulk tissue samples and eDNA metabarcoding of
water samples were compared. Alpha diversity was greatest with DNA or eDNA metabarcoding, depending on whether standard or unbiased methods were considered.
DNA metabarcoding reflected morphotaxonomic identification, whereas eDNA
metabarcoding produced markedly different communities. These complementary
tools should be combined for comprehensive invertebrate assessment. Crucian carp
presence minimally reduced alpha diversity in ponds, but positively influenced beta
diversity through taxon turnover (i.e., ponds with crucian carp contained different invertebrates to fishless ponds). Crucian carp presence contributes to landscape-scale
invertebrate diversity, supporting continued conservation management in England.
Our results show that molecular tools can enhance freshwater invertebrate assessment and facilitate development of more accurate and ecologically effective pond
management strategies
Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods
Organisms continuously release DNA into their environments via shed cells, excreta, gametes and decaying material. Analysis of this ‘environmental DNA’ (eDNA) is revolutionizing biodiversity monitoring. eDNA outperforms many established survey methods for targeted detection of single species, but few studies have investigated how well eDNA reflects whole communities of organisms in natural environments. We investigated whether eDNA can recover accurate qualitative and quantitative information about fish communities in large lakes, by comparison to the most comprehensive long-term gill-net data set available in the UK. Seventy-eight 2L water samples were collected along depth profile transects, gill-net sites and from the shoreline in three large, deep lakes (Windermere, Bassenthwaite Lake and Derwent Water) in the English Lake District. Water samples were assayed by eDNA metabarcoding of the mitochondrial 12S and cytochrome b regions. Fourteen of the 16 species historically recorded in Windermere were detected using eDNA, compared to four species in the most recent gill-net survey, demonstrating eDNA is extremely sensitive for detecting species. A key question for biodiversity monitoring is whether eDNA can accurately estimate abundance. To test this, we used the number of sequence reads per species and the proportion of sampling sites in which a species was detected with eDNA (i.e. site occupancy) as proxies for abundance. eDNA abundance data consistently correlated with rank abundance estimates from established surveys. These results demonstrate that eDNA metabarcoding can describe fish communities in large lakes, both qualitatively and quantitatively, and has great potential as a complementary tool to established monitoring methods
Temporal and spatial variation in distribution of fish environmental DNA in England’s largest lake
Environmental DNA offers great potential as a biodiversity monitoring tool. Previous work has demonstrated that eDNA metabarcoding provides reliable information for lake fish monitoring, but important questions remain about temporal and spatial repeatability, which is critical for understanding the ecology of eDNA and developing effective sampling strategies. Here, we carried out comprehensive spatial sampling of England's largest lake, Windermere, during summer and winter to 1) examine repeatability of the method, 2) compare eDNA results with contemporary gill-net survey data, 3) test the hypothesis of greater spatial structure of eDNA in summer compared to winter due to differences in water mixing between seasons, and 4) compare the effectiveness of shore and offshore sampling for species detection. We find broad consistency between results from three sampling events in terms of species detection and abundance, with eDNA detecting more species than established methods and being significantly correlated to rank abundance determined by long-term data. As predicted, spatial structure was much greater in the summer, reflecting less mixing of eDNA than in the winter. For example Arctic charr, a deep-water species, was only detected in deep, mid-lake samples in the summer, while littoral or benthic species such as minnow and stickleback were more frequently detected in shore samples. By contrast in winter, the eDNA of these species was more uniformly distributed. This has important implications for design of sampling campaigns, for example, deep-water species could be missed and littoral/benthic species over-represented by focusing exclusively on shoreline samples collected in the summer
Assessing the impact of the threatened crucian carp (Carassius carassius) on pond invertebrate diversity: A comparison of conventional and molecular tools
Fishes stocked for recreation and angling can damage freshwater habitats and negatively impact biodiversity. The pond‐associated crucian carp (Carassius carassius) is rare across Europe and is stocked for conservation management in England, but its impacts on pond biota are understudied. Freshwater invertebrates contribute substantially to aquatic biodiversity, encompassing many rare and endemic species, but their small size and high abundance complicate their assessment. Practitioners have employed sweep‐netting and kick‐sampling with microscopy (morphotaxonomy), but specimen size/quality and experience can bias identification. DNA and environmental DNA (eDNA) metabarcoding offer alternative means of invertebrate assessment. We compared invertebrate diversity in ponds (N = 18) with and without crucian carp using morphotaxonomic identification, DNA metabarcoding and eDNA metabarcoding. Five 2 L water samples and 3 min sweep‐net samples were collected at each pond. Inventories produced by morphotaxonomic identification of netted samples, DNA metabarcoding of bulk tissue samples and eDNA metabarcoding of water samples were compared. Alpha diversity was greatest with DNA or eDNA metabarcoding, depending on whether standard or unbiased methods were considered. DNA metabarcoding reflected morphotaxonomic identification, whereas eDNA metabarcoding produced markedly different communities. These complementary tools should be combined for comprehensive invertebrate assessment. Crucian carp presence minimally reduced alpha diversity in ponds, but positively influenced beta diversity through taxon turnover (i.e., ponds with crucian carp contained different invertebrates to fishless ponds). Crucian carp presence contributes to landscape‐scale invertebrate diversity, supporting continued conservation management in England. Our results show that molecular tools can enhance freshwater invertebrate assessment and facilitate development of more accurate and ecologically effective pond management strategies
Developing assessment policy and evaluating practice: a case study of the introduction of a new marking scheme
“I carry her in my heart”: An exploration of the experience of bereavement for people with learning disability
UK DNA working group eDNA week, January 2022
Here, we report on eDNA week, an international conference held online as a five‐day series of webinars from January 17, 2022, to January 21, 2022. The conference was organized by the UK DNA working group, which has witnessed considerable growth and application of eDNA research since its founding and first conference in 2014. The 2022 event, held online due to the COVID‐19 pandemic, provided an opportunity to invite international researchers who are leading the field, without the usual constraints of conference location. Compared with the previous UK‐based in‐person conferences, there was greater international participation amongst the 514 people who registered to attend the event. To emphasize the importance of collaboration between sectors in driving forward DNA monitoring, a session was devoted to presentations by participants from governmental agencies, and another to those from commercial companies developing and utilizing DNA tools. The industry and stakeholder sessions were accompanied by state‐of‐the‐art presentations delivered by a global group of DNA/eDNA researchers from 11 countries. These sessions were complemented by an open forum session for reflection and discussion
UK DNA working group eDNA week, January 2022
Here, we report on eDNA week, an international conference held online as a five-day series of webinars from January 17, 2022, to January 21, 2022. The conference was organized by the UK DNA working group, which has witnessed considerable growth and application of eDNA research since its founding and first conference in 2014. The 2022 event, held online due to the COVID-19 pandemic, provided an opportunity to invite international researchers who are leading the field, without the usual constraints of conference location. Compared with the previous UK-based in-person conferences, there was greater international participation amongst the 514 people who registered to attend the event. To emphasize the importance of collaboration between sectors in driving forward DNA monitoring, a session was devoted to presentations by participants from governmental agencies, and another to those from commercial companies developing and utilizing DNA tools. The industry and stakeholder sessions were accompanied by state-of-the-art presentations delivered by a global group of DNA/eDNA researchers from 11 countries. These sessions were complemented by an open forum session for reflection and discussion
Environmental DNA (eDNA) metabarcoding of pond water as a tool to survey conservation and management priority mammals
Environmental DNA (eDNA) metabarcoding can identify terrestrial taxa utilising aquatic habitats alongside aquatic communities, but terrestrial species' eDNA dynamics are understudied. We evaluated eDNA metabarcoding for monitoring semi-aquatic and terrestrial mammals, specifically nine species of conservation or management concern, and examined spatiotemporal variation in mammal eDNA signals. We hypothesised eDNA signals would be stronger for semi-aquatic than terrestrial mammals, and at sites where individuals exhibited behaviours. In captivity, we sampled waterbodies at points where behaviours were observed (‘directed’ sampling) and at equidistant intervals along the shoreline (‘stratified’ sampling). We surveyed natural ponds (N = 6) where focal species were present using stratified water sampling, camera traps, and field signs. eDNA samples were metabarcoded using vertebrate-specific primers. All focal species were detected in captivity. eDNA signal strength did not differ between directed and stratified samples across or within species, between semi-aquatic or terrestrial species, or according to behaviours. eDNA was evenly distributed in artificial waterbodies, but unevenly distributed in natural ponds. Survey methods deployed at natural ponds shared three species detections. Metabarcoding missed badger and red fox recorded by cameras and field signs, but detected small mammals these tools overlooked, e.g. water vole. Terrestrial mammal eDNA signals were weaker and detected less frequently than semi-aquatic mammal eDNA signals. eDNA metabarcoding could enhance mammal monitoring through large-scale, multi-species distribution assessment for priority and difficult to survey species, and provide early indication of range expansions or contractions. However, eDNA surveys need high spatiotemporal resolution and metabarcoding biases require further investigation before routine implementation
- …
