1 2	Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods
3	
4 5	Bernd Hänfling ^{1*} , Lori Lawson Handley ^{1*} , Daniel S. Read ² , Christoph Hahn ¹ , Jianlong Li ¹ , Paul Nichols ¹ , Rosetta C. Blackman ¹ , Anna Oliver ² and Ian J. Winfield ³ .
6	
7 8 9	¹ Evolutionary and Environmental Genomics Group (@EvoHull), School of Biological, Biomedical and Environmental Sciences, University of Hull (UoH), Cottingham Road, Hull, HU6 7RX
10 11	² Centre for Ecology & Hydrology (CEH), Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB
12 13	³ Lake Ecosystems Group, Centre for Ecology & Hydrology (CEH), Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP
14	
15	
16	
17	*Joint first authors
18	Corresponding author: Bernd Hänfling
19	Email: <u>b.haenfling@hull.ac.uk</u>
20	Tel: 0044-1482-465804
21	
22	
23	
24 25	Keywords: eDNA, environmental DNA, metabarcoding, fish monitoring, lakes, lentic systems, EC Water Framework Directive.
26	
27	Running title: eDNA metabarcoding of lake fish

"This is the peer reviewed version of the following article: Hänfling, B., Lawson Handley, L., Read, D. S., Hahn, C., Li, J., Nichols, P., Blackman, R. C., Oliver, A. and Winfield, I. J. (2016), Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods. Mol Ecol. doi:10.1111/mec.13660, which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1111/mec.13660/abstract. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."

28 Abstract

29 Organisms continuously release DNA into their environments via shed cells, excreta, 30 gametes and decaying material. Analysis of this "environmental DNA" (eDNA) is revolutionising biodiversity monitoring. eDNA outperforms many established survey 31 32 methods for targeted detection of single species, but few studies have investigated how well eDNA reflects whole communities of organisms in natural environments. We 33 34 investigated whether eDNA can recover accurate qualitative and quantitative information 35 about fish communities in large lakes, by comparison to the most comprehensive long-term gill-net dataset available in the UK. Seventy eight 2L water samples were collected along 36 depth profile transects, gill-net sites and from the shoreline in three large, deep lakes 37 (Windermere, Bassenthwaite Lake and Derwent Water) in the English Lake District. Water 38 39 samples were assayed by eDNA metabarcoding of the mitochondrial 12S and cytochrome 40 b regions. Fourteen of the 16 species historically recorded in Windermere were detected 41 using eDNA, compared to four species in the most recent gill-net survey, demonstrating 42 eDNA is extremely sensitive for detecting species. A key question for biodiversity monitoring is whether eDNA can accurately estimate abundance. To test this, we used the 43 number of sequence reads per species and the proportion of sampling sites in which a 44 species was detected with eDNA (i.e. site occupancy) as proxies for abundance. eDNA 45 46 abundance data consistently correlated with rank abundance estimates from established 47 surveys. These results demonstrate that eDNA metabarcoding can describe fish communities in large lakes, both qualitatively and quantitatively, and has great potential as 48 49 a complementary tool to established monitoring methods.

51 **INTRODUCTION**

52 Rapid monitoring of changes in biodiversity in response to climate change or other 53 anthropogenic pressures is imperative, but the time and resources required to generate the 54 necessary data are a major constraint in conservation management and ecological research. This is particularly relevant in large lake ecosystems, where for a number of taxa, 55 56 established methods currently struggle to deliver the required data to fulfil legislative obligations such as the EC Water Framework (European Communities 2000) and 57 corresponding legislation elsewhere in the word. This difficulty is particularly marked for 58 59 fish, for which all established sampling methods have various forms of bias (e.g. (Kubečka et al. 2009) and for which biological sampling is typically laborious and destructive (e.g. 60 61 (Argillier *et al.* 2013). Arguably the biggest recent development in biodiversity monitoring 62 is analysis of environmental DNA (eDNA), which refers to DNA released by organisms 63 into their environment for example in the form of shed cells, excreta or decaying matter. 64 eDNA has great potential for biodiversity monitoring since it is non-invasive, can detect rare or elusive species that are difficult to detect using established methods, and can 65 66 distinguish cryptic species or juvenile stages that are difficult to identify taxonomically (as reviewed in (Bohmann et al. 2014; Lawson Handley 2015; Rees et al. 2015). Aquatic 67 68 environments are particularly suited to eDNA analysis as DNA disperses rapidly in the 69 water column and is more homogeneously distributed than in soil or other sediments.

70

71 The application of eDNA has so far largely focused on targeted detection of one or a few 72 species using standard or quantitative Polymerase Chain Reaction (qPCR). Such targeted 73 eDNA assays have proven highly successful for detecting individual species from a wide 74 range of taxonomic groups in aquatic environments (see Table 1 in (Lawson Handley 75 2015) for a summary). For example, a recent eDNA study targeting great crested newts, Triturus cristatus, demonstrated high repeatability and substantially higher detection rates 76 77 for eDNA compared to established survey methods (Biggs et al. 2015). The characterisation of entire communities is not feasible using such species-specific 78 79 approaches due to the complexity of most ecosystems. An alternative approach is to 80 simultaneously screen whole communities of organisms using eDNA metabarcoding. Here, 81 community DNA is PCR-amplified using broad range primers, and sequenced on a High 82 Throughput Sequencing (HTS) platform (reviewed by Lawson Handley 2015). Direct

83 metabarcoding of homogenized community samples is revolutionising our understanding of the diversity of microscopic eukaryotes (Bik et al. 2012) in environments that are 84 85 notoriously difficult to study, such as soil (Creer et al. 2010), and the deep sea (Fonseca et 86 al. 2010). Metabarcoding of macrobial eDNA is still in its infancy, but the field is moving 87 forward at a fast pace. The first studies focussed on describing fish communities in tanks or 88 aquaria (Evans et al. 2015; Kelly et al. 2014; Mahon et al. 2014; Miya et al. 2015) or on a small scale in natural settings (Thomsen et al. 2012a; Thomsen et al. 2012b). Recent 89 refinements of the method, including more rigorous testing in aquaria (Miya et al. 2015) 90 91 and in marine (Miya et al. 2015; Valentini et al. 2015), and freshwater habitats (Valentini et al. 2015) have confirmed the method is extremely sensitive for detecting rare species, 92 93 and describing presence/absence. Important questions remain though about the efficacy of 94 eDNA metabarcoding for obtaining accurate estimates of species abundance and biomass. 95 Obtaining quantitative estimates from eDNA is challenging because of the large number of factors that influence DNA dynamics in the environment (reviewed by (Barnes et al. 2014; 96 97 Lawson Handley 2015) and because of the many opportunities for bias during laboratory 98 steps (sampling, DNA extraction, PCR), sequencing and bioinformatics stages (Ficetola et 99 al. 2015; Yu et al. 2012). In metabarcoding studies, in principle, the number of sequences 100 per taxon (or "operational taxonomic unit") could be taken as an estimator of species biomass, but unfortunately in practice, this relationship is not a simple one. For example, 101 102 (Kelly et al. 2014) demonstrated a perfect correlation between rank abundance of eDNA 103 sequences representing four fish genera and rank biomass in a large aquarium, but the 104 actual number of sequence reads was not correlated to biomass. Similarly, Evans et al. 105 (2015) found only a modest positive relationship between the number of sequence reads 106 and abundance of eight fish and one amphibian species in mesocosm experiments. A second approach that may be more promising for estimating abundance is to carry out 107 comprehensive spatial and temporal sampling of a given environment and calculate the 108 109 proportion of sites in which a species is detected with eDNA. Such "site occupancy" data is often collected in ecological studies and can be used as a proxy for abundance 110 111 (MacKenzie & Nichols 2004; MacKenzie et al. 2002). Recent studies indicate this 112 approach could be very promising for analysing eDNA data from both targeted assays 113 (Hunter et al. 2015; Pilliod et al. 2013; Schmidt et al. 2013), and metabarcoding data 114 (Valentini et al. 2015).

How well eDNA metabarcoding performs compared to established survey methods for 116 117 generating both qualitative (presence/absence) and quantitative (abundance/biomass) data 118 remains a key question in the development of the technology for biodiversity monitoring. Here, we addressed this question by comparing eDNA metabarcoding data to the most 119 120 comprehensive long-term data available for lake fish populations in the UK. We carried 121 out rigorous spatial sampling in three large, deep lakes (Windermere, Bassenthwaite Lake 122 and Derwent Water) in the English Lake District, which are the best-studied lakes in the UK in terms of their fish fauna. Firstly, we developed a workflow for lake fish eDNA 123 124 metabarcoding, which included building an appropriate reference database of mitochondrial 12S and cytochrome b (CytB) genes, testing primer combinations, and 125 126 developing pipelines for eDNA analyses from sampling to bioinformatics. Second, we carried out water sampling along depth-profile transects, at gill-net survey sites and at 127 128 shoreline locations within the lakes. Finally we compared the qualitative and quantitative results from eDNA metabarcoding with long-term and recent gill-net survey datasets to 129 130 investigate the performance of eDNA against established methods.

131

132 MATERIAL AND METHODS

133 Sampling

Sampling was carried out in three natural lakes (Bassenthwaite Lake, Derwent Water and 134 Windermere) in the English Lake District, UK, that have been intensively studied in terms 135 136 of their fish populations, physio-chemical and other biological properties for many years 137 (Maberly et al. 2011, Fig. 1). Fish populations in these three lakes have been monitored 138 since the early 1990s (Bassenthwaite Lake and Derwent Water, e.g. (Winfield et al. 2012a; 139 Winfield et al. 2015b) or early1940s (Windermere, e.g. (Winfield et al. 2008a; Winfield et 140 al. 2015b). This monitoring has been performed using gill netting, trapping, hydroacoustics or analysis of recreational anglers' catches and constitutes the best long-term lake fish 141 datasets in the UK. Windermere, England's largest natural lake (surface area 1480 ha, 142 143 maximum depth 64 m), is composed of two distinct basins with different physical, 144 chemical and ecological characteristics (North Basin: surface area of 810 ha, maximum 145 depth 64 m, mesotrophic; South Basin: surface area 670 ha, maximum depth 44 m, eutrophic). Bassenthwaite Lake (surface area 528 ha, maximum depth 19 m, eutrophic) and 146

Derwent Water (surface area 535 ha, maximum depth 22 m, mesotrophic) are also among
the largest lakes in England and are linked by the River Derwent.

149

In total 30 offshore samples were collected from each of the two Windermere basins. 150 151 Additionally, six samples were collected opportunistically from a small area of the 152 shoreline at the Northern end of the South Basin. Water samples were collected from Windermere during $28^{\text{th}} - 30^{\text{th}}$ January 2015. Most offshore samples were collected along 153 three transects with approximately 1 km sampling interval between sites. Transects 1, 2 154 and 3 run along the 5m, 20m depth contour and the lake midline respectively (Fig. 1). The 155 sampling depth for transect 1, 2 and 3 was 2 m, 10 m and 20 m respectively. This sampling 156 157 scheme covered 7 of the 10 sites that are used for annual gill net surveys (Winfield et al. 158 2015b). Water samples were also collected at the 3 remaining gill net sites (Fig. 1). At the 159 deepest point along the midline transect in both North (approximate depth 64 m) and South 160 Basin (approximate depth 44 m) a depth profile was collected. The North Basin depth transect was collected at 0-10-20-30-40-50-60 m depth and the South Basin depth transect 161 was collected at 0-10-20-30-40 m. (Fig. 1). Water samples were also collected at 5 gill net 162 sites (Winfield et al. 2015a) and one shore site per lake at both Bassenthwaite Lake and 163 Derwent Water (Fig. 1) on 10th February 2015. The total number of samples (excluding 164 blanks) was therefore N=78. 165

166

167 Offshore water sampling was carried out by boat using a Friedinger (Windermere) or 168 Ruttner (Bassenthwaite Lake and Derwent Water) sampler (Fig. S1) deployed at a 169 specified depth. For each 2 L water sample, five 400 ml subsamples were collected in proximity of 100 m around the sampling point, and pooled in a sterile plastic bottle (Fig. 170 S1). The GPS location was recorded at the sampling midpoint (Appendix 1 and 2). 171 Between samples, sampling equipment was sterilised by washing in 10% of a commercial 172 bleach solution (containing <3% sodium hypochlorite) followed by 10% microsol 173 174 detergent (Anachem, UK) and rinsed with purified water (Fig. S1). The sampler was then rinsed again in lake water at the next sampling location. 2 L of purified water was rinsed 175 through the sampler following decontamination after every 5 samples, and the water 176 177 retained as a sampling blank to allow us to check for contamination during sampling.

178 Shoreline samples were collected by immersing a sterile 2 L plastic bottle by hand. For 179 each sample, five 400 ml samples were collected from within a 100 m stretch of shoreline 180 and pooled. All samples were stored in an insulated box at approximately 4 °C until 181 filtration.

182

183 *eDNA* capture, extraction, amplification, library preparation and sequencing

184 The full 2 L of each sample was filtered through sterile 0.45 µm cellulose nitrate membrane filters and pads (47 mm diameter; Whatman, GE Healthcare, UK) using 185 186 Nalgene filtration units in combination with a vacuum pump (Fig. S1). Most samples required one filter and filtered in less than an hour. For more turbid and thus slow to filter 187 188 samples, a second filter was used. Filtration equipment was sterilized in 10% commercial bleach solution for 10 minutes then rinsed with 10% microsol and purified water after each 189 190 filtration. Filtration blanks (2 L purified water) were run before the first filtration and then approximately after every sixth sample, in order to test for contamination at the filtration 191 192 stage. Windermere samples were filtered within 8 hours of collection in a lakeside 193 laboratory (within the facilities of the Freshwater Biological Association, Windermere) 194 that is not used for handling fish or DNA and was decontaminated before use by bleaching 195 floors and surfaces. Samples from Bassenthwaite Lake and Derwent Water were filtered in 196 a dedicated eDNA facility at the University of Hull within 12 hours of collection. Detailed 197 operating procedures are in place in our eDNA laboratory which are aimed at avoiding 198 contamination and access to the laboratory is strictly limited to staff who are familiar with 199 these procedures. DNA was extracted from filters using the PowerWater DNA Isolation Kit (MoBio Laboratories, Inc. Carlsbad, USA) using the manufacturer's instructions. 200

201

Full details of the steps involved in reference database construction, *in silico* and *in vitro* primer testing, including PCR conditions, are given in the Supplementary Text. Briefly, we compiled custom, phylogenetically curated reference databases (Supplementary Text and Fig. S2) for standard mitochondrial fish DNA barcoding genes (12S and cytochrome *b*) for 67 freshwater fish species including all those recorded in the UK and additional non-native species that could potentially be present (Table S1). A number of published primers (Table S2) were evaluated against these databases *in silico* for conservation of primer binding 209 sites and species resolution of the resulting PCR amplicons (Table S3) using the program EcoPCR (Ficetola et al. 2010). Two previously published primer pairs, which amplify 210 fragments of contrasting length, from two different mtDNA regions, were selected for 211 metabarcoding, since no single primer pair resolved all species (Table S3). The primer pair 212 213 12S F1 and 12S R1 (Table S2) amplifies a ~106 bp fragment of the mitochondrial 12S 214 gene. These primers were designed and tested in silico (Riaz et al. (2011) and used in a 215 large marine mesocosm eDNA metabarcoding study of bony fish communities (Kelly et al. 2014). The second selected primer pair, CytB L14841 and CytB H15149 (Table S2) 216 217 amplifies a 460bp fragment of the cytochrome b gene (CytB) gene and has been used commonly for standard DNA barcoding of fishes (Kocher et al. 1989). Selected primer 218 pairs were then tested in vitro on 22 species, firstly in individual reactions (Fig. S3) to 219 220 check consistency of amplification across taxa, and secondly in 10 mock communities to 221 evaluate whether all species amplified in competitive mixed assemblages. Mock communities were generated from spectrophotometer-quantified DNA extractions of same 222 223 22 species (Supplementary Text and Table S4) and community samples were sequenced 224 via metabarcoding as detailed below.

225

226 Samples for metabarcoding were PCR amplified with a one-step library preparation 227 protocol using, for each locus, 8 individually tagged forward primers and 12 individually tagged reverse primers allowing for 96 uniquely dual-indexed combinations (Kozich et al. 228 229 2013). All collection and extraction blanks were included in PCRs and contamination during PCR was evaluated by "amplifying" all 96 combinations of tagged primers with 230 231 purified water and checking on ethidium bromide-stained agarose gels. PCRs were replicated three times for each sample, and pooled in order to minimise bias in individual 232 233 PCR reactions (see Supplementary Text for full PCR conditions). Each library was normalised to approximately 1–2 ng/ μ l PCR product per sample using the SequalPrep 234 235 Normalization Plate Kit (Invitrogen, Life Technologies) and samples subsequently pooled. 236 Libraries were then quantified by qPCR (average of three replicate quantifications) using 237 the KAPA Illumina Library Quantification Kit on a Roche LightCycler Real-Time PCR 238 machine using manufacturers guidelines. Libraries were run at a 6 pM concentration on an 239 Illumina MiSeq using the 2 x 300 bp V3 chemistry. In order improve clustering during the 240 initial sequencing cycles 10% of PhiX genomic library was added.

241

242 Bioinformatics and data analysis

243 The program Trimmomatic 0.32 (Bolger et al. 2014) was used for quality trimming and 244 removal of adapter sequences from the raw Illumina reads. Average read quality was 245 assessed in 5 bp sliding windows starting from the 3'-end of the read and reads were 246 clipped until the average quality per window was above phred 30. All reads shorter than a 247 defined minimum read length (12S - 90bp; CytB - 100bp) were discarded. Sequence pairs were subsequently merged into single high quality reads using the program FLASH 1.2.11 248 (Magoč & Salzberg 2011). The remaining reads were screened for chimeric sequences 249 250 against the curated reference databases using the 'uchime ref' function implemented in vsearch 1.1 (https://github.com/torognes/vsearch). To remove redundancy, sequences were 251 252 clustered at 100% identity using vsearch 1.1 (https://github.com/torognes/vsearch). 253 Clusters represented by less than 3 sequences were considered sequencing error and were 254 omitted from further analyses. Non-redundant sets of query sequences were then compared 255 to the respective curated non-redundant reference database using BLAST (Zhang et al. 2000). BLAST output was interpreted using a custom python function, which implements a 256 257 lowest common ancestor (LCA) approach for taxonomic assignment similar to the strategy 258 used by MEGAN (Huson et al. 2007). In brief, after the BLAST search we recorded the 259 most significant matches to the reference database (yielding the top 10% bit-scores) for each of the query sequences. If only a single taxon was present in the top 10%, the query 260 was assigned directly to this taxon. If more than one reference taxon was present in the top 261 262 10%, the query was assigned to the lowest taxonomic level that was shared by all taxa in 263 the list of most significant hits for this query. Sequences for which the best BLAST hit had a bit score below 80 or had less than 100% / 95% identity (12S / CytB) to any sequence in 264 265 the curated database, were considered non-target sequences. The custom bioinformatics pipeline used for data processing is available on Github (https://github.com/HullUni-266 267 bioinformatics/metaBEAT). To assure full reproducibility of our analyses we have 268 deposited the entire workflow in an additional dedicated Github repository (https://github.com/HullUni-bioinformatics/Haenfling et al 2016). In order to obtain a 269 270 qualitative assessment of the taxonomic diversity, non-target sequences were pooled across 271 all lake samples and subjected to a separate BLAST search against NCBI's complete

nucleotide (nt) database. Taxonomic assignment for non-target sequences was obtained
using MEGAN 5.10.6 (Huson *et al.* 2007).

274

275 Filtered data were summarised in two ways for downstream analyses: 1) the number of 276 sequence reads per species at each site (hereon referred to as read counts) and 2) the 277 proportion of sampling sites in which a given species was detected (hereon referred to as 278 the site occupancy). To reduce the possibility of false positives, we only regarded a species 279 as present at a given site if its sequence frequency exceeded a certain threshold level 280 (proportion of all sequence reads in the sample). The choice of threshold level was guided by the analysis of sequence data from the mock communities and is explained in full in the 281 282 Supplementary Text (and corresponding Tables S4, S5 and Figs S5 and S6). This analysis 283 revealed that threshold levels of 0.3% and 1% were required for 12S and CytB respectively 284 to omit all false positives in the mock communities (hereon referred to as Th100, Tables 285 S4, S5 and Fig. S5). At Th100 sequences of rare expected species were also lost from the mock community data (Tables S4 and S5) and the lake samples (Fig. S6). We therefore 286 287 decided to apply slightly less conservative values of 0.1% and 0.2% for 12S and CytB 288 respectively, at which over 90% of false positives were omitted in the mock communities 289 to the main analysis of lake samples (Th90). We also investigated the potential extent of 290 contamination from tag jumping in our libraries by exploring the distribution of PhiX assigned to target samples (see Supplementary Text and Fig. S7 for full details). The level 291 292 of PhiX contamination in our samples also indicated that our thresholds were appropriate 293 to eliminate most of false positives created during the sequencing process. In 95% of the 294 12S and CytB libraries the proportion of PhiX did not exceed 0.0015 and 0.001 295 respectively (with a corresponding maximum of 0.0023 and 0.0201).

All downstream analyses were performed in R v.3.1.3. (RCoreTeam 2015). Before investigating species detection and abundance estimation with eDNA, we first evaluated whether 12S and CytB datasets produced consistent results by calculating the Pearson product-moment correlation coefficient for both read count and site occupancy in R v.3.1.3. (RCoreTeam 2015).

A flow chart summarising of our analytical pipeline, from reference database compilation
 to data analyses is provided in Appendix 5 of the Supplementary Online Material.

303 Species detection using eDNA

In order to maintain a balanced sampling design, the Windermere shore sites which were only collected in a small area of the South basin, were excluded from all comparisons of species presence and abundance comparisons across basins.

307 First, we evaluated the performance of eDNA to detect species previously recorded in our 308 four lake basins. Second, we used site occupancy data to investigate the spatial distribution 309 of eDNA records within Windermere. It should be noted that full site occupancy modelling 310 requires temporal replication to estimate the detection probability and the true proportion 311 of occupied sites (MacKenzie et al. 2002). This was not possible during the current study, 312 so our estimates of site occupancy are simply based on presence/absence, and should be treated as preliminary. We explored whether there were differences in eDNA distribution 313 314 between transects, between offshore and shoreline samples, along depth profiles, and 315 between Windermere North and South Basins. A persistent difference in species 316 composition between the two Windermere basins has been extensively described by established sampling methods and is linked to their contrasting trophic status (Winfield et 317 318 al. 2008a; Winfield et al. 2012b; Winfield et al. 2008b). eDNA records from species with 319 no preference for trophic state are consequently expected to be distributed throughout the 320 lake, whereas eDNA from eutrophic-favouring species will be more predominant in the 321 south than north basin and eDNA from species that prefer less eutrophic conditions will be 322 more predominant in the north than south basin. Finally, we used sample-based rarefaction (Gotelli & Colwell 2010) to determine the number of samples needed to detect species 323 324 present, focussing on Windermere, where sampling was spatially comprehensive. 325 Rarefaction was performed with 499 randomisations in the R package Vegan (Oksanen et 326 al. 2015) for CytB and 12S for the North and South Basins of Windermere combined. Only 327 sequences corresponding to the 16 species previously recorded in Windermere were included in these analyses. 328

329

330 Comparison of data from eDNA and established survey methods

Summaries of fish community composition and abundance were produced for each of the
four lake basins using a combination of data collected at six sites in each of our four lake
basins in September 2014 using standardised survey gill-netting techniques (described in

334 detail by (Winfield et al. 2015a) and (Winfield et al. 2015b). Gill-net survey data alone are not sufficient to describe the whole fish community since this technique under-samples or 335 336 even fails to record some species, even when they are locally abundant (e.g. those with an extremely shallow distribution such as bullhead, *Cottus gobio*, or elongate morphology 337 338 such as eel, Anguilla anguilla). Gill-net data were therefore supplemented with published 339 information (Maberly et al. 2011; Pickering 2001; Winfield et al. 2012a; Winfield et al. 1996; Winfield & Durie 2004; Winfield et al. 2010; Winfield et al. 2008b) to summarise 340 fish community compositions. This information and IJW's expert opinion developed during 341 342 25 years of sampling the four lake basins was then used to assign each recorded species to an abundance rank, with a rank of 1 given to the most abundant species by numbers. The 343 ranking produced in this way is likely to be very robust for the most abundant species 344 345 which consistently appeared in the catches of the survey gill nets, but is likely to be less so 346 for a few species which anglers' catches indicate are present in small numbers in each lake but which are very rarely or never recorded by scientific sampling. This entire expert 347 opinion ranking process was undertaken prior to the eDNA analysis and therefore with no 348 349 knowledge of the corresponding rankings. Further details of the results from established 350 surveys are provided in the Supplementary Text and Table S5.

351

352 A series of correlations was performed to compare the fish abundance data generated from established surveys and eDNA metabarcoding. Specifically, the relationship between 353 354 eDNA data (read count and site occupancy) and data from established surveys (rank 355 abundance or biomass based on long term expert opinion or actual numbers from 356 September 2014 gill-net surveys) was investigated by calculating Spearman's Rho (for 357 rank correlations) and Pearson's Product-moment correlation coefficient (for actual numbers, when data was normally distributed) in R v3.1.3 (R Core team 2015). The 358 359 analyses were repeated for both loci and all four sampled basins.

360 A work flow diagram of our entire approach is available as electronic Appendix 5.

361

362 **RESULTS**

The *in silico* testing of primer pairs showed that both of the chosen 12S and CytB fragments could unambiguously distinguish all species which could potentially occur at the

365 study sites (Table S1 and S3). However, across the wider reference database a number of taxa could not be identified to the species level. Lampetra planeri and L. fluviatilis, which 366 are probably not reproductively isolated, could not be resolved by either fragment. 367 Additionally, 12S did not distinguish species of the genera Salvelinus and Coregonus, 368 369 three species of non-native Asian carp (Hypophthalmichthys nobilis, H. molitrix, 370 Ctenopharyngodon idella) and two species of the family Percidae (Perca fluviatilis and 371 Sander lucioperca). However, given that Percidae and the genera Coregonus and 372 Salvelinus are represented only a single species each (Perca fluviatilis, Salvelinus alpinus 373 and Coregonus albula respectively) in the study area we have attributed sequence counts for the higher taxonomic levels to these individual species for further downstream analysis. 374 This was also confirmed by the CytB data which showed that no other members of these 375 376 taxonomic groups were present. Both loci amplified consistently well across 22 target 377 species in *in vitro* testing in single species amplifications (Fig. S3). All 22 species were detected in the 12S mock communities (Table S4, Fig. S4 a), whereas three species were 378 379 not detected in the CytB mock community data (Table S5, Fig. S4 b and Supplementary 380 Text for full details). Observed and expected number of sequence reads were not significantly different for either locus (12S $\chi^2 = 0.224$, df = 21, P > 0.05; CytB $\chi^2 = 0.367$, 381 df = 21, P > 0.05 Fig. S4). Moreover, there was a significant correlation between the 382 number of sequence reads/ng PCR template DNA for 12S and CytB (Pearson's r = 0.599, 383 df = 20, P = 0.01, Fig. S4 c),384

385

386 Clear PCR bands were obtained for all 78 eDNA samples at both loci. In contrast no target-sized bands were observed in the PCR negatives, collection or filtration blanks and 387 we therefore decided not to sequence these. The total sequence read count passing quality 388 389 control per library, before removal of chimeric sequences, was 6,306,326 for 12S and 390 4,793,108 for CytB (average read count per sample 71663 and 54467 respectively). After 391 chimera removal, the 12S and CytB libraries contained 2,698,144 and 3,161,608 sequences 392 respectively. This means that 43% of the raw dataset was non chimeric sequences for 12S, and 66% for CytB. The final libraries, after removal of redundant sequences, contained 393 394 2,562,183 sequences for 12S and 3,012,249 sequences for CvtB, with average read counts 395 per sample of 29,116 and 34,230 respectively. The proportion of target (fish) sequences 396 ranging from 3.4-88.3% (average 23.5%) and 0-100% (average 49.0%) for 12S and CytB 397 respectively. Most of the target sequence assignments in the lake samples were to species level with the exceptions mentioned above. The assignments to higher taxonomic levels 398 399 were taken into account for calculation of total sequences read number per sample but 400 otherwise not considered for further downstream analysis. For the CytB data of the mock 401 communities some genus level sequence assignments were interpreted as belonging to 402 specific species (for full details see Supplementary text and Table S5). The full sequence 403 count data for each primer pair are available in the Supplementary Material Appendix 1 404 and 2).

405

High consistency was found between CytB and 12S in terms of both site occupancy (SO) and average read count (RC) (Fig. S8). Data from the two loci were significantly correlated (Pearson's *r* consistently P < 0.05) for all basins, for both SO and RC (Fig. S8). Consistent significant correlations were also found between SO and RC for each basin and locus (Fig. S9), therefore only the results for site occupancy are presented in the following main text. All results based on read count data are provided in the Supplementary Material.

412

413 Species detection using eDNA

414 The gill-net survey of September 2014 detected 25% (4/16) of the previously recorded 415 species in Windermere. By contrast, 14 of the 16 previously recorded species (i.e. 88%) 416 were detected using 12S and 75% (12/16) using CytB across the entire lake. Within each Windermere basin 13 previously-recorded species were detected with 12S whereas 12 and 417 418 11 species were detected for the North and South Basins respectively with CytB (Fig. 2 a, 419 b; Fig. S10). A number of additional species were also detected in Windermere, including 420 C. carpio, Gymnocephalus cernuus, Leucaspius delineatus, O. mykiss, Osmerus eperlanus 421 (12S), Platichthys flesus and Pseudorasbora parva (CytB). Two species that have been 422 recorded in Windermere but are not present in the sequence data are the two lamprey 423 species L. fluviatilis and Petromyzon marinus. In the 12S data set the majority of potential 424 false positives were found in a single sample from Windermere North Basin which was consequently omitted from all further analysis (sample W14). Gill-net sampling detected 425 60% (6/10) of the species known to be present in Bassenthwaite Lake whereas 90% (9/10) 426 of species were detected using 12S and 70% (7/10) with CytB (Fig. 2 c; Fig. S10). 427

Additional species not previously recorded in Bassenthwaite included Abramis brama

(CytB), and *Barbatula barbatula*, *G. aculeatus*, and *S. erythrophthalmus* (12S, Fig. 2 c).
In Derwent Water, gill-net sampling in September 2014 detected 77% (7/9) recorded
species, whereas 88% (8/9) of species were detected with 12S and 67% (6/9) with CytB
(Fig. 2 d; Fig. S10). The 12S assay detected an additional four species previously
unrecorded, including *B. barbatula*, *G. aculeatus*, *Pungitius pungitius* and *S. erythrophthalmus*.

435 Sample-based rarefaction analyses on the combined Windermere data set indicated that 436 approximately 10-25 samples captures the majority (~85%) of the taxa present in the entire 437 sample although the number of samples required to achieve the same taxon coverage is 438 higher for CytB (Fig. 3).

439

428

440 *Estimating abundance with eDNA*

441 There was a consistent, negative relationship between eDNA site occupancy and long-term 442 rank (where rank abundance decreases from 1-16) and this correlation is highly significant for Windermere North and South Basins, for both loci (Fig. 4 a, b, e, f). Similar trends 443 444 were found for Bassenthwaite Lake and Derwent Water but correlations were not significant (Fig. 4 c, d, g, h). The number of sequence reads was also significantly 445 446 correlated with long-term rank in Windermere North and South Basins, for both loci (Fig. 447 S11 a, b, e, f). Again similar trends were seen for Derwent Water and Bassenthwaite Lake 448 but only the correlation for Derwent Water at 12S is significant (Fig. S11 c, d).

449

450 Site occupancy and number of sequence reads were also compared against actual numbers 451 sampled in the September 2014 gill-net surveys for all four basins (Figs S12 and S13 452 respectively). There was a consistent positive relationship between abundance data from 453 the recent gill-net surveys and eDNA (both read count and occupancy, and both loci), in 454 spite of the small number of species (4-6) detected in the gill net surveys and hence low 455 statistical power in the analyses. However only the correlations for CytB read count were 456 consistently significant in all basins (Fig. S13 e-h), and this result may be driven by the 457 high abundance and read count for P. fluviatilis.

458

459 Spatial distribution of eDNA records within Windermere

Comparing the distribution of eDNA data by transect indicates a slight trend for more 460 species to be detected at inshore versus deeper mid-lake regions (Fig. 5). With 12S, 13 461 species were detected in samples from the 5 m transect compared to 10 from the mid-line. 462 463 Twelve species were detected in the 6 geographically-close shore samples. A similar trend 464 was found for CytB, with 11 species detected in both 5 m transect and shore samples, 465 compared to 8 in the mid-line (Fig. 5). Depth profiles in the North and South Basins revealed that eDNA from the majority of detected species was distributed throughout the 466 467 water column (Fig. S14). Within the depth profiles, A. anguilla and S. alpinus were only detected in deep water in the North Basin (≥ 60 m and 30 m respectively, Fig. S14 a and c). 468 469 Similarly, in the South Basin depth profile *P. phoxinus* and *S. salar* were only detected at 470 the deepest sampling point (40 m) (Fig. S14 b and c).

471

472 Site occupancy data based on 12S sequences were used to investigate the spatial 473 distribution of each species recorded at more than two sites around Windermere (Fig. S15). The general pattern emerging from this analysis is that species-specific eDNA was not 474 475 evenly distributed around the lake. Although some species such as P. fluviatilis, R. rutilus, 476 E. lucius and S. trutta, are recorded almost ubiquitously within the lake, eDNA from other 477 species is predominantly found in one of the two basins. S. alpinus, P. phoxinus and G. 478 aculeatus eDNA was common in the North Basin but very rare in the South Basin, whereas 479 A. brama and A. anguilla eDNA is more common in South Basin (Fig. S15). Overall the 480 relative proportion of sequence read counts for different species across sample sites was significantly different between Windermere North and South Basins ($\chi^2 = 47817$; df = 13; 481 P < 0.001 and $\chi^2 = 134750$; df = 11; P < 0.001 for 12S and CytB respectively, Fig. 6 a, b). 482 A similar pattern was observed for the relative proportion of sites occupied ($\chi^2 = 61.43$; df 483 = 13; P < 0.001 and $\chi^2 = 48.65$; df = 11; P < 0.001 for 12S and CytB respectively Fig. 6 c, 484 485 d). Distribution of eDNA reflected in the two Windermere Basins reflected the expected 486 association between species and ecological condition. eDNA from species associated with 487 eutrophic conditions (R. rutilus, T. tinca, S. erythrophthalmus, A. brama, and A. anguilla) was more abundant in the South than North Basin, while eDNA from species that prefer 488

less eutrophic conditions (S. salar, S. trutta, S. alpinus, P. phoxinus, and C. gobio) was
more abundant in the North than South Basin (Fig. 6).

491

492 Non-fish sequences

493 A large proportion of both 12S and CytB sequences could not be assigned to UK 494 freshwater fish from the custom database, and were compared to the NCBI database using 495 BLAST. Non-fish sequences included a wide range of species directly associated with 496 aquatic habitats including mammals such as otter, Lutra lutra and birds, including 497 moorhen, Gallinula chloropus; cormorant, Phalacrocorax carbo and various duck and geese species found within the UK. The list also included many other vertebrate species 498 499 potentially occurring in the wider catchment area (Table S6) including domesticated farm 500 animals such as cow, Bos taurus; sheep, Ovis aries and chicken, Gallus gallus domesticus, 501 and wild vertebrates such as red deer, Cervus elaphus; red squirrel, Sciurus vulgaris; red 502 fox, Vulpes vulpes and tawny owl, Strix aluco. Sequences assigned to Homo sapiens were 503 also abundant, likely present as genuine eDNA found in lake water due to the high degree 504 of human interaction with the lakes through water sports, angling and waste water, or 505 present as a laboratory contaminant. The primers appear to be largely vertebrate specific, 506 except for low-level amplification of bacterial 16S detected in the 12S dataset. No 507 invertebrate sequences were identified.

508

510 **DISCUSSION**

511 In this study we used high-throughput sequencing of eDNA from the mitochondrial 12S 512 and CytB genes to characterise the fish community composition in three large lakes (Lake 513 Windermere, Derwent Water and Bassenthwaite Lake) in the UK. eDNA data was 514 compared to comprehensive long-term data on fish distribution and abundance from 515 established survey methods. eDNA outperformed established methods in terms of species detection. More surprisingly, eDNA data accurately reflected the rank abundance of 516 517 species within the lake fish community, suggesting eDNA methods may be more 518 quantitative than previously thought.

519

520 Comparison of of eDNA and established methods for species detection

521 eDNA metabarcoding was effective in detecting fish species when compared against 522 decades of data from established sampling techniques and other sources (as described most recently by Winfield et al. 2015a and Winfield et al. 2015b). In Windermere, 60 offshore 523 (30 for each basin) and 6 shoreline samples were analysed and 14 of the 16 previously-524 525 recorded species were detected. The two rarest species, river lamprey, L. fluviatilis and sea 526 lamprey, *P. marinus*, were not detected in the eDNA data, but these species were unlikely 527 to be present in the lakes at the time of sampling and temporally replicated sampling is required to address this issue. Other rare species such as tench, T. tinca and rudd, S. 528 529 erythropthalmus were detected at low levels with 12S in the North and South Basins 530 respectively. The results of the rarefaction analysis on the Windermere data indicate that a 531 detection probability of over 85% can be achieved with a substantially lower number of 532 samples; approximately 10 for 12S and 25 for CytB. In contrast, only the four most 533 common species were detected in the gill net survey from 2014, which is typical of surveys 534 (4-5 species have been typically sampled each year since 2011, Winfield *et al.* 2012c; 535 Winfield et al. 2013; Winfield et al. 2014).

536

The eDNA results from Bassenthwaite Lake and Derwent Water were also remarkably concordant with the fish community based on long-term gill-netting (Thackeray *et al.* 2006) given that only six samples were collected per lake. All but the rarest species were detected in Derwent Water and Bassenthwaite (dace, *L. leuciscus*, and vendace, *C. albula*

respectively) using 12S. Dace was however detected in Bassenthwaite, and vendace in 541 Derwent Water with 12S, while neither species was detected with CytB. Dace has been 542 recorded intermittently and in low numbers in Derwent Water within the last decade 543 (Thackeray et al. 2006) but was not detected by gill netting in 2014 (Winfield et al. 544 545 2015a). Vendace is known to occur only in a restricted deep area of Bassenthwaite Lake 546 and only three individuals have been recorded in gill-net surveys since 2000 (Winfield et al. in press). In these cases DNA concentration might fall below the detection threshold of 547 the PCR assay or those which were set for the bioinformatics analysis in order to reduce 548 the possibility of "false positives". Roach, R. rutilus, on the other hand, is a common 549 550 species in all four basins, but was not detected with CytB in Bassenthwaite and Derwent 551 Water. This species was also detected in the CytB mock community at lower than expected 552 frequency, suggesting that the CytB primers may not amplify this species well in 553 competitive reactions.

554

555 Overall, eDNA metabarcoding data produced a more comprehensive species list than gill 556 net surveys with a similar effort. The under-representation of species in gill-netting surveys 557 is an acknowledged sampling artefact which has a number of causes including fish 558 morphology (e.g. eel species are not susceptible to retention in gill nets), fine-scale spatial 559 distribution (e.g. three-spined stickleback may be limited to the extreme inshore where nets cannot be deployed) or movement patterns (e.g. bullhead may be unlikely to be sampled by 560 gill nets due to their relatively limited movements). This corroborates results from 561 562 Thomsen et al. (2012a) and Valentini et al. (2015) who showed that eDNA metabarcoding data detected more species of marine fish than alternative surveying techniques. 563

564

565 Detection of previously unrecorded species with eDNA

Eight previously unrecorded species were detected in Lake Windermere, four in Bassenthwaite Lake and four in Derwent Water. In most cases these eDNA records were at very low occupancy (1 or 2 sites) and read counts (0.1%-1.0%), just above our threshold for accepting a positive record. These records could be either genuine detections of species that have been missed with established methods, false positives from sequencing error (barcode misassignment, Deakin *et al.* 2014; or "tag jumps" Schnell *et al.* 2015), laboratory or environmental contamination (i.e. the presence of DNA in the environmentfrom, for example, the wider watershed, bird faeces, waste water or fishing bait). The

unexpected records likely originate from a combination of factors, discussed below.

575

576 Only one of the eight previously unrecorded Windermere species, ruffe, G. cernua, was 577 detected at high frequencies with eDNA. 12S sequences were present in 27% of the sites in the South Basin and 38% of the sites in the North Basin although the species was not 578 579 detected with CytB. This species has been recently introduced to a number of Cumbrian lakes (Winfield et al. 2010), and is present in Rydal Water approximately 3 km upstream 580 of Windermere. It is therefore possible that G. cernua has colonised Windermere and is 581 582 present at very low abundance (below the detection limits of gill-netting programme), or 583 that eDNA has been transported from the G. cernua populations upstream. Three 584 kilometres is well within the range of eDNA transport distances that have previously been recorded (Deiner and Altermatt 2015). Absence of positive records with the long CytB 585 fragment also suggests that only relatively degraded G. cernua DNA was present in the 586 587 lake, lending further support to this hypothesis. Although this species was present in the 588 mock communities, the high frequency of occurrence means it is unlikely that this result 589 can be explained by sequencing errors such as barcode misassignment.

590

591 The other seven previously-unrecorded Windermere species (common carp, C. carpio; 592 sunbleak, L. delineates; topmouth gudgeon, P. parva; rainbow trout, O. mykiss; smelt, O. 593 eperlanus; flounder, P. flesus and mudminnow, U. pygmea) were detected at very low 594 levels. The actual presence of U. pygmea, L. delineates and P. parva, in Windermere seems extremely unlikely since their known distribution does not overlap with the 595 596 Windermere catchment. Given that all three species were included in the mock 597 communities these records are most likely explained by low level laboratory contamination 598 or sequencing barcode misassignment from the mock communities into the samples 599 (Deakin et al. 2014). O. mykiss, O. eperlanus and P. flesus, do occur in the catchment and 600 the former two species are also a very popular dead bait used by pike anglers. Since none 601 of these species have been handled in the laboratory and pike anglers were active during 602 the water sampling, it seems that such dead baiting or eDNA transport from other parts of

the catchment are likely sources of eDNA for these species in the lake. *C. carpio*, was recorded with both CytB and 12S at one of the shore sites. The fact that both markers were recorded at the same site indicates that common carp DNA and individuals might have been present in the lake water but highly localised and undetected by established sampling techniques. However this species was also present in the mock communities and therefore laboratory contamination or "tag jumping" cannot be excluded.

609

Four previously-unrecorded species were detected in each of the Bassenthwaite and 610 611 Derwent Water basins. Again most of these records were based on low sequence reads and site occupancy. The records for some species (common bream, A. brama in Bassenthwaite 612 613 Lake, nine-spined stickleback, *P. pungitius* in Derwent Water) are most likely explained by 614 barcode misassignment because they have never been recorded in the catchment but are 615 present in the mock communities. The presence of the remaining species (stone loach, B. 616 barbatula; three-spined stickleback, G. aculeatus; and rudd, S. cephalus) in the lakes or in the catchment cannot be so easily excluded. These records therefore could either represent 617 618 environmental contamination or indicate that the species are present at low numbers and 619 have not been detected by previous long-term gill-netting (summarised by Winfield et al. 620 2012a).

621

622 We quantified the level of background contamination using sequence information from 623 mock communities and the level of PhiX contamination in target samples, which enabled 624 us to choose a suitable threshold level for filtering the data for false positives without 625 losing more information than necessary. Ultimately though, it is not possible to distinguish between false positives and true positives if they occur at the same frequency, and some 626 rare species are likely to be lost with a threshold approach. Using consistency across 627 technical replicates as recently used by Port et al. (2016) might be a more suitable 628 629 approach to control for false positive if rare species are of particular interest.

630

631 Use of eDNA for assessing relative abundance of lake fish

632 This study attempted to assess the relative abundance of individual species by using their sequence read counts or site occupancy as proxies. Using read count data is a valid 633 634 approach under the assumption that no significant bias is introduced during sampling, 635 subsequent PCR or sequencing. However, this assumption is unrealistic, and previous 636 studies have demonstrated that the relationship between abundance and read count is 637 complex (e.g. Ficetola et al. 2015; Yu et al. 2012; Evans et al. 2015; Kelly et al. 2014). Site occupancy models have been developed to cope with multiple levels of bias and 638 uncertainty (e.g. imperfect detection, MacKenzie et al. 2002) and are therefore highly 639 promising for eDNA (Schmidt et al. 2013). As discussed in the Methods, full site 640 occupancy modelling requires estimation of detection probability from temporal sampling, 641 642 which was beyond the scope of the present study. Our site occupancy estimates should 643 therefore be treated as preliminary. Encouragingly though, read count and site occupancy 644 data were correlated for each basin and each locus, suggesting that both measures of abundance are informative. As we discuss below though, and not surprisingly, site 645 occupancy relies on comprehensive spatial sampling to obtain sufficient power for 646 647 estimating abundance.

648

649 We found a consistent significant relationship between rank abundance and read count or 650 occupancy data for both basins of Lake Windermere. This indicates both read count and 651 occupancy are equally effective at estimating relative abundance under comprehensive 652 spatial sampling. In Derwent Water and Bassenthwaite Lake, correlations with both 653 abundance measures are weak and not significant with one exception (number of 12S sequence reads for Derwent Water). We suggest this is related to low statistical power 654 655 from analysing only six samples per lake. There was also a consistent trend between eDNA and gill-net data, but the results are less conclusive due to low statistical power from the 656 657 small number of species sampled in the gill-net survey. Although these results are 658 generally encouraging, further work is critically needed to determine how robust eDNA is 659 for estimating abundance. Increased spatial coverage of Bassenthwaite Lake and Derwent 660 Water, together with temporal sampling to allow estimation of detection probability and 661 site occupancy modelling in all basins, are critical next steps.

663 Spatial distribution of eDNA in Lake Windermere

664 We investigated the spatial distribution of eDNA in Lake Windermere by comparing 1) off shore and shoreline samples, 2) three depth profile transects and 3) North and South 665 Basins, which differ in their trophic status. Firstly, more species were detected in shallower 666 than in deep water, with 13 species detected along the 5 m contour, compared to 9 in the 667 668 mid-line transect. Interestingly, 12 of the 16 previously-recorded species were detected in the 6 shore samples, which were collected in close proximity to one another. This suggests 669 670 eDNA could accumulate on the shoreline, and that shoreline sampling could be adequate for detection of most species. More rigorous sampling along the lake shore is needed to 671 672 investigate this further. Second, we expected little difference along depth profile transects 673 since our sampling was carried out in the winter, when water stratification has broken 674 down. As predicted, within the depth transects the majority of species were detected throughout the water column but some, including the typically deep water species Arctic 675 676 charr, S. alpinus, were only detected at the deepest sampling points, indicating that surface water sampling might be ineffective in deeper lakes. Given the small scale of this 677 678 experiment the results regarding vertical sampling should be regarded as preliminary. Thirdly, we hypothesized that eDNA from species associated with less eutrophic (i.e. 679 680 mesotrophic) conditions would be more abundant in the North Basin, while eDNA from 681 species associated with more eutrophic conditions should be more abundant in the South Basin, and species with no preference should be detected throughout the lake. We observed 682 683 clear differences in the spatial distribution of eDNA, consistent with this hypothesis. These 684 results are consistent with long-term datasets from trapping, gill-netting and recreational anglers' catches (Winfield et al. 2008a; Winfield et al. 2008b; Winfield et al. 2011; Craig 685 et al. 2015; Winfield et al. 2015b). For example, established methods have found perch, P. 686 fluviatilis and pike, E. lucius consistently in both basins (Craig et al. 2015; Winfield et al. 687 2008a respectively) while S. alpinus is much more abundant in the North than in the South 688 689 Basin (Winfield et al. 2008b; Winfield et al. 2015b) and A. brama, although a relatively 690 minor component of the Windermere fish community, is consistently more abundant in the 691 South than in the North Basin (Winfield et al. 2011).

692

693 Technical approach and the use of 12S or CytB as a marker

694 In the present study we chose to validate the assays by sequencing mock communities, 695 constructed from 22 species of fish, on the same flow cell as the eDNA samples. Although 696 this allows for the success of the assay to be assessed within the same sequencing library as 697 the samples, this approach may cause problems due to the low level miss-assignment of 698 sequences from the mock community to the samples. For future studies we would 699 recommend not including mock communities in the same library, or only including species 700 that have no chance of being found in the eDNA samples and to sequence all negative 701 controls and blanks.

702

703 Both markers were generally consistent in terms of the number of read counts and 704 occupancy data generated, although clear advantages and disadvantages were associated 705 with each marker. All species were detected in the mock communities with 12S whereas 706 three were undetected with CytB. In the eDNA samples, site occupancy was higher, and 707 more species were detected with 12S than CytB, as discussed earlier. Differences in amplification success could be due to fragment size (~100bp for 12S and 460bp for CytB), 708 709 mismatches in primer binding sites or both. Given that eDNA degrades rapidly in the 710 environment (Barnes et al. 2014; Rees et al. 2014), the difference in detection is probably a 711 result of longer persistence of the shorter 12S fragment in lake water. This may allow for 712 dispersion of eDNA across a larger geographical scale, increasing the probability of 713 detection at any site. Consequently, it may be that detection of the longer CytB fragment 714 indicates the species is present closer to where the water sample was taken, while 12S 715 fragments may have originated from some distance away either within the lake or even up 716 its tributaries. Using a longer fragment may be useful for pinpointing the exact location of 717 species, but using a shorter fragment might be more useful for simply detecting the presence of a species anywhere in the water body using a limited number of subsamples. 718 719 An additional aspect to consider is the persistence of eDNA in sediments, which has been 720 shown to be considerably longer when compared to the water column (Turner *et al.* 2014). 721 Differential persistence of the different sized fragments, and resuspension of eDNA during rain events could account for historical eDNA being detected. However, differences in 722 723 primer specificity and efficiency between the two genes prevent conclusive answers to 724 these issues, and this issue warrants further systematic exploration through experimental 725 approaches and analysing a wider range of eDNA fragment lengths.

726

727 Use of eDNA to survey non-fish vertebrates

This study also offers some insights into the feasibility of eDNA techniques for the wider 728 729 assessment of non-fish vertebrates associated with lakes and their immediate catchments. 730 The majority of the 12S and CytB sequences generated did not match the comprehensive 731 UK fish reference database used and non-fish sequences could be assigned to a wide range 732 of vertebrate species including mammals, birds, amphibians and some marine fish species 733 (known to be used in the lakes as dead bait by anglers) which were not included in our 734 reference data base. Moreover, the primers used appear to be largely vertebrate-specific 735 since no invertebrate sequences were identified, although many such species are present. 736 Consequently, the eDNA approach employed in this study may have further applications in 737 the qualitative but extensive high-level survey of non-fish vertebrate taxa occurring in lake 738 catchments.

739

740 Conclusions

The present investigation was driven primarily by the need to develop robust and cost-741 742 effective lake fish assessments to meet the requirements of the EC Water Framework 743 Directive and other international and national environmental legislation. It is universally 744 agreed that there is no single sampling method that can produce all of the kinds of 745 information needed to make such assessments, but even the use of a combination of 746 methods from the range of established techniques still presents an incomplete picture with varying degrees of bias and incomplete coverage (Kubečka et al. 2009). The findings of 747 748 the present study indicated that eDNA approaches can make a very significant contribution 749 to this challenging task. The results were consistent with our understanding of the fish 750 communities of three large, deep lakes based on long-term monitoring using established 751 techniques. Moreover, this work moved beyond a simple presence/absence analysis to produce indications of the relative abundance of species, which were again consistent with 752 753 earlier assessments and ecological interpretations. Although the eDNA approach cannot 754 produce information on individual condition or population characteristics such as growth 755 curves, it proved to be very effective at producing robust data at the community level 756 which is undoubtedly the most challenging task for established sampling methods.

757 eDNA is arguably one of the most rapidly expanding areas of research in molecular 758 ecology but there is much to learn before methods such as the one described here can be 759 deployed for biological monitoring; particularly under legislative or sensitive circumstances. Temporal sampling is an essential next step from the current study, to 760 761 account for imperfect detection and fully test the site occupancy modelling approach, and to investigate the effects of water stratification on the spatial distribution of eDNA. More 762 763 generally, there is a pressing need to develop and demonstrate the wider applicability of eDNA to a greater range of water bodies (such as those with varied chemical and physical 764 properties) as well as other animal and plant communities. 765

767 Acknowledgments This work was funded by a UK Environment Agency contract (SC140018) awarded to BH, LLH, DR and IJW. We are particularly grateful to Drs Kerry 768 769 Walsh and Graeme Peirson for initiating the study and for support throughout. We 770 gratefully acknowledge the Freshwater Biological Association for providing access to their 771 laboratory facilities and United Utilities for use of gill-netting data. Ben James and Janice 772 Fletcher provided invaluable help during field work, while Drs Tony Dejean and Joachim 773 Mergeay contributed to helpful discussions on eDNA approaches and Dave Lunt provided 774 excellent advice on the bioinformatics analysis. We would like to thank Drs Holly Bik, 775 Kristy Deiner and Cameron Truner for constructive criticism on the initial submission which 776 helped to strengthen the manuscript

777

778 References

- Argillier C, Caussé S, Gevrey M, *et al.* (2013) Development of a fish-based index to assess the eutrophication status of European lakes. *Hydrobiologia* 704, 193-211.
 Parner MA, Turner CP, Jarda CL, *et al.* (2014) Environmental Conditions Influence aDNA
- Barnes MA, Turner CR, Jerde CL, *et al.* (2014) Environmental Conditions Influence eDNA
 Persistence in Aquatic Systems. *Environmental Science & Technology* 48, 1819-1827.
- Biggs J, Ewald N, Valentini A, *et al.* (2015) Using eDNA to develop a national citizen science based monitoring programme for the great crested newt (Triturus cristatus). *Biological Conservation* 183, 19-28.
- Bik HM, Porazinska DL, Creer S, *et al.* (2012) Sequencing our way towards understanding global
 eukaryotic biodiversity. *Trends in Ecology & Evolution* 27, 233-243.
- Bohmann K, Evans A, Gilbert MTP, *et al.* (2014) Environmental DNA for wildlife biology and
 biodiversity monitoring. *Trends in Ecology & Evolution* 29, 358-367.
- Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. *Bioinformatics*.
- Deakin CT, Deakin JJ, Ginn SL, *et al.* (2014) Impact of next-generation sequencing error on
 analysis of barcoded plasmid libraries of known complexity and sequence. *Nucleic Acids Research* 42, e129.
- European_Communities (2000) Directive 2000/60/EC, Establishing a framework for community
 action in the field of water policy. *Official Journal of the European Communities* L 327, 1 71.
- Evans NT, Olds BP, Renshaw MA, *et al.* (2015) Quantification of mesocosm fish and amphibian
 species diversity via environmental DNA metabarcoding. *Molecular Ecology Resources*,
 n/a-n/a.
- Ficetola G, Coissac E, Zundel S, *et al.* (2010) An In silico approach for the evaluation of DNA
 barcodes. *Bmc Genomics* 11, 434.
- Ficetola GF, Pansu J, Bonin A, *et al.* (2015) Replication levels, false presences and the estimation
 of the presence/absence from eDNA metabarcoding data. *Molecular Ecology Resources*15, 543-556.
- Fonseca VG, Carvalho GR, Sung W, et al. (2010) Second-generation environmental sequencing
 unmasks marine metazoan biodiversity. *Nature Communications* 1, 98.
- Gotelli NJ, Colwell RK (2010) Estimating species richness. In: *Biological Diversity: Frontiers In Measurement And Assessment.* (eds. Magurran AE, McGill BJ), p. 345. Oxford University Press, Oxford.

811	Hunter ME, Oyler-McCance SJ, Dorazio RM, et al. (2015) Environmental DNA (eDNA) Sampling
812	Improves Occurrence and Detection Estimates of Invasive Burmese Pythons. Plos One 10,
813	e0121655.
814	Huson DH, Auch AF, Qi J, Schuster SC (2007) MEGAN analysis of metagenomic data. Genome
815	<i>Research</i> 17 , 377-386.
816	Kelly RP, Port JA, Yamahara KM, Crowder LB (2014) Using Environmental DNA to Census
817	Marine Fishes in a Large Mesocosm. Plos One 9.
818	Kocher T, Meyer A, Edwards S, et al. (1989) Dynamics of mitochondrial-DNA evolution in
819	animals - amplification and sequencing with conserved primers. Proceedings of the
820	National Academy of Sciences of the United States of America 86, 6196-6200.
821	Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a Dual-
822	Index Sequencing Strategy and Curation Pipeline for Analyzing Amplicon Sequence Data
823	on the MiSeq Illumina Sequencing Platform. Applied and Environmental Microbiology 79,
824	5112-5120.
825	Kubečka J, Hohausová E, Matěna J, et al. (2009) The true picture of a lake or reservoir fish stock:
826	A review of needs and progress. Fisheries Research 96, 1-5.
827	Lawson Handley L (2015) How will the 'molecular revolution' contribute to biological recording?
828	Biological Journal of the Linnean Society, n/a-n/a.
829	Maberly SC, De Ville MM, Thackeray SJ, et al. (2011) A survey of the lakes of the English Lake
830	District: the Lakes Tour 2010. Report to Environment Agency, North West Region and
831	Lake District National Park Authority. LA/NEC04357/1. 223 pp.
832	MacKenzie DI, Nichols JD (2004) Occupancy as a surrogate for abundance estimation Animal:
833	an international journal of animal bioscience. Available at:
834	http://abc.museucienciesjournals.cat/files/ABC-27-1-pp-461-467.pdf.
835	MacKenzie DI, Nichols JD, Lachman GB, et al. (2002) ESTIMATING SITE OCCUPANCY
836	RATES WHEN DETECTION PROBABILITIES ARE LESS THAN ONE. Ecology 83,
837	2248-2255.
838	Magoe T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome
839	assemblies. Bioinformatics 21, 2957-2963.
840 041	Manon A, Nathan L, Jerde C (2014) Meta-genomic surveillance of invasive species in the bait
841 042	trade. Conservation Genetics Resources 6, 503-507.
042	Miya M, Sato Y, Fukunaga I, et al. (2013) MiFish, a set of universal PCK primers for matchangeding anying mental DNA from fighest detection of more than 220 subtranical
043 011	metabalcoding environmental DNA from fishes, detection of more than 250 subtropical
044 015	Okamon I. Cuillauma Dianahat E. Kindt D. et al. (2015) Vagan: Community Ecology Dackage. D.
045 016	bisanen J, Guinaume Blanchel F, Kinut K, <i>et al.</i> (2013) Vegan. Community Ecology Package. K
040	Diskoring AD (2001) Restaving the Health of England's Langest Lake Freshwater Dislogical
04/ 010	Picketing AD (2001) Restoring the Health of England's Largest Lake Fleshwater Biological
040 010	Association, Amolesiae, U.K. Dilliod DS Coldbarg CS Arkla DS Waits ID (2012) Estimating accuracy and abundance of
049 850	stream amphibians using environmental DNA from filtered water samples <i>Canadian</i>
050 851	Journal of Fisheries and Aquatic Sciences 70 , 1123, 1130
852	Port IA O'Donnell II Romero-Maraccini OC Leary PR Litvin SV Nickols KI Vamahara KM
052 853	Kelly PD (2016) Assessing vertebrate biodiversity in a kelp forest ecosystem using
055 854	environmental DNA Molecular Ecology 25, 527,541
054 855	RCoreTeam (2015) R: A language and environment for statistical computing R Foundation for
856	Statistical Computing Vienna Austria LIRL http://www.R-project.org/
857	Rees HC Gough KC Middleditch DI Patmore IRM Maddison BC (2015) Applications and
858	limitations of measuring environmental DNA as indicators of the presence of aquatic
859	animations of inclusioning environmental D101 us indicators of the presence of aquatie
860	Rees HC Maddison BC Middleditch DI Patmore IRM Gough KC (2014) The detection of
861	aduatic animal species using environmental DNA – a review of eDNA as a survey tool in
862	ecology Journal of Applied Ecology 51 1450-1459
863	Riaz T Shehzad W Viari A <i>et al.</i> (2011) ecoPrimers: inference of new DNA barcode markers
864	from whole genome sequence analysis. <i>Nucleic Acids Research</i> 39 .

865	Schmidt BR, Kery M, Ursenbacher S, Hyman OJ, Collins JP (2013) Site occupancymodels in the
866	analysis of environmental DNA presence/absence surveys: a case study of an emerging
867	amphibian pathogen. Methods in Ecology and Evolution 4, 4646–4653.
868	Thackeray SJ, Maberly SC, Winfield IJ (2006) The ecology of Bassenthwaite Lake (English Lake
869	District). Freshwater Forum 25, 1-80.
870	Thomsen PF, Kielgast J, Iversen LL, et al. (2012a) Detection of a Diverse Marine Fish Fauna
871	Using Environmental DNA from Seawater Samples. <i>Plos One</i> 7.
872	Thomsen PF, Kielgast J, Iversen LL, et al. (2012b) Monitoring endangered freshwater biodiversity
873	using environmental DNA <i>Molecular Ecology</i> 21 2565-2573
874	Turner CR Uv KL Everhart RC (2014) Fish environmental DNA is more concentrated in aquatic
875	sediments than surface water. <i>Biological Conservation</i> 183 , 93-102.
876	Valentini A, Taberlet P, Miaud C, et al. (2015) Next-generation monitoring of aquatic biodiversity
877	using environmental DNA metabarcoding. <i>Molecular Ecology</i> , n/a-n/a.
878	Winfield I. Fletcher J. James JB (2008a) The Arctic charr (Salvelinus alpinus) populations of
879	Windermere, UK: population trends associated with eutrophication, climate change and
880	increased abundance of roach (Rutilus rutilus) <i>Environmental Biology of Fishes</i> 83 25-35
881	Winfield II Adams CE Bean CW <i>et al.</i> (2012a) Conservation of the vendace (<i>Coregonus albula</i>)
882	the UK 's rarest freshwater fish Advances in Limnology 63 547-559
883	Winfield II Crago-Hine D Fletcher IM Cubby PR (1996) The conservation ecology of <i>Coregonus</i>
884	albula and C lavaretus in England and Wales UK In Conservation of Endangered
885	<i>Ereshwater Fish in Europe</i> (eds Kirchhofer A Hefti D) pp 213-223 Birhauser Verlag
886	Rasel
887	Winfield II Durie NC (2004) Fish introductions and their management in the English Lake
888	District Fisheries Management and Ecology 11 195-201
889	Winfield II Fletcher IM Ben James I (2012b) Long-term changes in the diet of pike (Esox lucius)
890	the top aquatic predator in a changing Windermere. <i>Freshwater Biology</i> 57 373-383
891	Winfield II Fletcher IM James IB (2010) An overview of fish species introductions to the English
892	Lake District IJK an area of outstanding conservation and fisheries importance. <i>Journal of</i>
893	Annlied Ichthyology 26 60-65
894	Winfield II Fletcher IM James IB (2011) Invasive fish species in the largest lakes of Scotland
895	Northern Ireland Wales and England: the collective UK experience <i>Hydrobiologia</i> 660
896	93-103
897	Winfield II Fletcher IM James IB (2012c) Monitoring the fish populations of Windermere 2011
898	Winfield IJ Fletcher JM James JB (2012) Monitoring the fish populations of Windermere 2013
899	Report to Environment Agency. North West Region LA/NEC05043/2 74 pp
900	Winfield II Fletcher IM James IB (2015a) Monitoring the fish populations of Bassenthwaite Lake
901	and Derwent Water 2014
902	Winfield II Fletcher IM James IB (2015b) Monitoring the fish populations of Windermere 2014
903	Report to United Utilities LA/NEC05364/2 66pp
904	Winfield II Fletcher IM James IB (in press) The 'reappearance' of vendace (Coregonus albula) in
905	the face of multiple stressors in Bassenthwaite Lake UK Fundamental & Applied
906	Limnology
907	Winfield IJ James JB Fletcher JM (2008b) Northern pike (<i>Esox lucius</i>) in a warming lake:
908	changes in population size and individual condition in relation to prev abundance
909	Hydrobiologia 601 29-40
910	Yu DW Ji YO Emerson BC <i>et al</i> (2012) Biodiversity soup: metabarcoding of arthropods for
911	ranid biodiversity assessment and biomonitoring <i>Methods in Ecology and Evolution</i> 3
912	613-623
913	Zhang Z. Schwartz S. Wagner L. Miller W (2000) A Greedy Algorithm for Aligning DNA
914	Sequences. Journal of Computational Biology 7 203-214
~ = 1	sequences community computational biology 1, 205 211.
915	

917 Data accessibility: All de novo sequences generated through Sanger sequencing made

- 918 available directed through our archived analysis pipeline on Github (see below). Accession
- numbers and taxon affiliations of all curated sequences are available as electronic
- 920 Appendices. Raw Illumina read data has been submitted to NCBI (BioProject:
- 921 PRJNA313432; BioSample accessions: SAMN04530423-SAMN04530510; SRA
- accessions: SRR3359939-SRR3360124). To assure full reproducibility of our analyses we
- have deposited the entire bioinformatics workflow in a dedicated Github repository, which
- also contains the curated reference databases and further supplementary data, such as taxon
- 925 specific read counts for each sample as tables (<u>https://github.com/HullUni-</u>
- 926 <u>bioinformatics/Haenfling_et_al_2016</u>; the repository is permanently archived with Zenodo
- 927 (DOI 10.5281/zenodo.49823). Our custom data processing pipeline is available on Github
- 928 (https://github.com/HullUni-bioinformatics/metaBEAT).

929

930 Author contributions: B.H., L.L.H. and I.J.W., conceived the study; B.H., L.L.H., I.J.W.,

931 J.L. and R.B.; carried out the field work. I.J.W. prepared fish abundance data from

932 established method surveys. P.N., J.L and R.B. carried out all pre-sequencing laboratory

933 work. D.R. assisted in the design of the molecular assays and carried out Illumina

- sequencing and the initial steps of the raw data analysis; A.O. assisted with the Illumina
- 935 sequencing; C.H. assembled the bioinformatics pipeline and reference data base and wrote
- 936 the relevant sections of the manuscript. B.H., and L.L.H. performed the statistical analyses.
- 937 B.H., L.L.H., I.J.W. and D.R. wrote the paper; all authors commented on the final draft.

- 939 Tables
- 940 **Table 1:** Species previously recorded in the study lakes or recorded with eDNA. Full scientific,
- 941 common names and three letter codes used in figures are given.
- 942

Scientific Name	Common Name	Code	Previously recorded in study lakes
Abramis brama	Common bream	BRE	Yes
Anguilla anguilla	European eel	EEL	Yes
Barbatula barbatula	Stone loach	LOA	Yes
Coregonus albula	Vendace	VEN	Yes
Cottus gobio	Bullhead	BUL	Yes
Cyprinus carpio	Common carp	CAR	No
Esox lucius	Pike	PIK	Yes
Gasterosteus aculeatus	Three-spined stickleback	3SS	Yes
Gymnocephalus cernua (=cernuus)	Ruffe	RUF	Yes
Lampetra fluviatilis	River lamprey	RLA	Yes
Leucaspius deliniatus	Sunbleak	SUN	No
Leuciscus leuciscus	Dace	DAC	Yes
Oncorhynchus mykiss	Rainbow trout	RTR	No
Osmerus eperlanus	Smelt	SME	No
Perca fluviatilis	Perch	PER	Yes
Petromyzon marinus	Sea lamprey	SLA	Yes

Phoxinus phoxinus	Minnow	MIN	Yes
Platichthys flesus	Flounder	FLO	No
Pseudorasbora parva	Topmouth gudgeon	TMG	No
Pungitius pungitius	Nine-spined stickleback	9SS	No
Rutilus rutilus	Roach	ROA	Yes
Salmo salar	Atlantic salmon	SAL	Yes
Salmo trutta	Brown trout	BTR	Yes
Salvelinus alpinus	Arctic charr	СНА	Yes
Scardinius erythrophthalmus	Rudd	RUD	Yes
Squalius cephalus (=Leuciscus cephalus)	Chub	CHU	Yes
Tinca tinca	Tench	TEN	Yes
Umbra pygmaea	Mudminnow	MUD	No

943

945 Figure legends

946 Figure 1: Sampling sites in the three study lakes a) Bassenthwaite Lake, b) Derwent 947 Water, and c) Windermere in the English Lake District (UK). Samples were collected from 948 gill net sites (orange circles) and single shoreline sites (yellow circles) in Bassenthwaite 949 Lake and Derwent Water. In Windermere, samples were collected along transects 950 following the 5 m (red circles), 20 m (green circles) and mid line (blue circles) depth 951 profiles, as well as additional gill net and shoreline sites.

Figure 2: Site occupancy for 12S and CytB data from a) offshore sites Windermere North Basin, b) offshore sites Windermere South Basin, c) Bassenthwaite Lake and d) Derwent Water. All species recorded previously are included. Previously-recorded species are ordered according to their rank abundance within basin from established survey methods. Species that have not been recorded previously are indicated with an asterisk and are ordered alphabetically. Full species names are given in Table 1.

Figure 3: Sample based rarefaction analyses for Lake Windermere. Only offshore samplesand species recorded previously in Lake Windermere are included in the analyses.

Figure 4: Correlations between site occupancy data and long-term rank based on
established surveys and expert opinion for all four basins and both 12S (a-d) and CytB (eh), where 1 is the highest and 16 the lowest rank abundance. Species three letter codes are
given in Table 1.

Figure 5: Average number of sequence reads obtained per transect for Lake Windermere
North Basin (a,b,) and South Basin (c,d) for both 12S (a,c) and CytB (b,d). Only species
that have been recorded previously are included. Species are ordered according to their
rank abundance within basin from established survey methods.

Figure 6: Relative distribution of fish species and their ecological preferences in Windermere North Basin (mesotrophic) and South Basin (eutrophic) based on the proportion from the total number of sequence reads (a, b) and the relative proportion of sites occupied (c,d) reflecting the trophic status of the two basin.

Molecular Ecology Sample-based rarefaction

a) Windermere North Basin

Molecular Ecology

b) Windermere South Basin

Long term rank

Long term rank

d) South Basin: CytB

c) South Basin: 12S

Molecular Ecology

Supplementary Online Material

Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods

Bernd Hänfling^{1*}, Lori Lawson Handley^{1*}, Daniel S. Read², Christoph Hahn¹, Jianlong Li¹, Paul Nichols¹, Rosetta C. Blackman¹, Anna Oliver² and Ian J. Winfield³.

Supplementary Text: Methods & Results	3
Compilation of reference databases	3
In silico and In vitro testing of metabarcoding primers	4
Library preparation	5
Mock communities	5
Determining a threshold for defining the presence of species at individual sites	6
Fish abundance and distribution estimated from established method surveys	7
Supplementary Tables	9
Table S1: List of species included in Reference database	9
Table S2: Sequences and references of primers tested in this study	13
Table S3: Summary of in silico testing results	14
Table S4: Total sequence reads in individual 12S mock communities.	15
Table S5: Total sequence reads in individual CytB mock communities.	16
Table S6: Summary of species abundance data from established method survey for the four Cumbrian	
lake basins.	17
Table S7: Overview of families detected in the 12S and CytB data set respectively.	18
Supplementary Figures	.19
Fig. S1: Sampling	19
Fig. S2: Maximum Likelihood Phylogenies used to evaluate utility of loci for species resolution in <i>in</i>	• •
silico testing	20
Fig S3: Results of <i>in vitro</i> tests (single species amplifications) of the two chosen primer combinations A (μ) (1080), P) 12S Kelly et al. (2014)	1) 21
Cylo Kochel et al. (1969), D) 125 Kelly et al. (2014)	$\frac{21}{22}$
Fig. S4: Mock community results	22
(b) mock community data) 25
Fig. S6: Site occupancy across 29 sites in Windermere based on 12S (a) and CytB (b) using three differ	ent
thresholds for defining "presence".	26
Fig. S7: Cumulative frequency distribution of relative PhiX read counts in the raw sequence data of the	
12S libraries (a) and CytB libraries (b).	27
Fig. S8: Correlations between 12S and Cytb in terms of site occupancy ("SO", a-d) and read count ("RG	2",
e-h) data	28
Fig. S9: Correlations between site occupancy and read count data per basin for 12S (a-d) and CytB (e-h)
Fig. S10: a) Read count and b) proportion of sequence reads by lake basin	29 30
Fig. S11: Correlations between read count ("number of sequence reads") and long term rank (with "1"	50
corresponding to the most abundant species).	32
Fig. S12: Correlations between site occupancy and 2014 gill net numbers	33
Fig. S13: Correlations between read count ("number of sequence reads") and 2014 gill net numbers	34
Fig. S14: Distribution of eDNA sequence reads in each of the depth profile transects	35

Fig. S15: Spatial Distribution of species recorded in Windermere North and South Basins at more than 2	
sites (Site Occupancy) using 12S data	36
Additional file information:	57
References:	37

Supplementary Text: Methods & Results

Compilation of reference databases

We compiled a reference database of 67 freshwater fish species including all those recorded in the UK and additional non-native species that could potentially be present, but have not yet been confirmed, in order to be able to confidently identify species from their DNA barcodes and facilitate bioinformatics steps. We targeted two regions of mtDNA: 12S and CytB, in order to compare species delimitation properties of the markers. Reference sequences were retrieved from Genbank for CytB for all 67 fish species and for 12S for 57 species (Table S1) using E-utilities (Sayers 2008).

Fresh tissue samples were collected for the 24 species which were used to generate additional reference sequences for 12S (21 species) and/or were used as positive controls (Table S1). Tissues were sourced from the existing collection at the University of Hull or specifically collected for this project. Fish DNA was extracted from fin clips and muscle tissues using a DNeasy Blood & Tissue kit (Qiagen, UK). In order to generate reference sequences of the entire 12S region a set of novel primers was designed from an alignment of whole mitochondrial fish (12S 30F: CACTGAAGMTGYTAAGAYG genomes and 12S 1380R: CTKGCTAAATCATGATGC). Polymerase chain reactions (PCRs) were performed in 25 µl volumes containing: 1x NH₄ Buffer, 2 mM MgCl₂, 1 mM total dNTPs, 0.8 µM of each primer, 1 U BIOTAQ polymerase (Bioline, London, UK), and ~10 ng DNA template. PCRs were performed on an Applied Biosystems Veriti Thermal Cycler with the following profile: 95 °C for 2 min, 30 cycles of 95 °C for 30 sec, 50 °C for 30 sec and 72 °C for 50 sec, followed by a final elongation step at 72 °C for 10 min. Purified PCR products were Sanger sequenced directly (Macrogen Inc., Republic of Korea) in both directions using the PCR primers. Sequences were edited using CodonCode Aligner (CodonCode Corporation, Centerville, MA, USA).

Reference sequences were further processed in the ReproPhylo environment (Szitenberg *et al.* 2015). Sequences were extracted in FASTA format and clustered at 100% identity to remove redundancy using CD-hit-est (Li & Godzik 2006). As a final quality control we inferred phylogenetic trees from the non-redundant sets of reference sequences for each marker gene in ReproPhylo, as follows: Sequences shorter than 400 bp were removed and the remaining

Molecular Ecology

sequences were aligned using MAFFT (Katoh & Standley 2013). For CytB records, nucleotide sequences were translated to protein sequences prior to alignment and aligned protein sequences were converted back to nucleotide sequences using Pal2Nal (Suyama *et al.* 2006). Alignments were trimmed using trimAl (Capella-Gutiérrez *et al.* 2009). Maximum likelihood trees were inferred with RAxML 8.0.2 (Stamatakis 2006) using the GTR+gamma model of substitutions. Resulting trees were manually investigated to identify any sequence records that were obviously misplaced in the phylogenetic trees, i.e. records which were likely mislabelled (Fig. S2). Such sequences were removed from the database as they would likely cause conflicts in downstream analyses. The remaining sequences, i.e. the curated non-redundant reference databases, were used in all downstream analyses.

The complete reference database initially included a total of 775, and 4,813 sequences (partial or complete) for the two markers 12S, and CytB, respectively and covered all 67 target species for CytB and 60 species for 12S. Sequences for seven species were unobtainable for 12S (*Aspius aspius, Coregonus autumnalis, Lampetra planeri, Misgurnus fossilis, Neogobius melanostomus, Proterorhinus semilunaris, Vimba vimba*). Of these seven, only *C. autumnalis* and *L. planeri* have been confirmed in the UK, but they have not been recorded in our target lakes. After curating, i.e. removing redundant (i.e. identical haplotypes) and likely mislabelled records (based on phylogenetic tree inference Fig. S2 a and b), the database contained 272 and 2,155 sequences for 12S, and CytB, respectively. The complete list of retained reference sequences for 12S and CytB is provided in an excel spreadsheet (see Supplementary Appendix 1). The complete reference databases compiled in Genbank format have been deposited in the dedicated Github repository for this study: https://github.com/HullUni-bioinformatics/Haenfling et al 2016.

In silico and In vitro testing of metabarcoding primers

To test the suitability of primers for eDNA based metabarcoding of freshwater fish communities we carried out *in silico* experiments with a number of published primer pairs which amplify fragments of the 12S and CytB region using the curated non-redundant sets of reference sequences (Table S2). The program EcoPCR (Ficetola *et al.* 2010) was used to test whether the variability of the amplified region for 12S is high enough to distinguish the all target species. This approach could not be applied to the Kocher *et al.* (1989) CytB primers since a large proportion of the sequences downloaded from Genbank did not cover the location of the forward

primer. To evaluate this primer pair we therefore cropped the alignment to the 413 bp Kocher amplicon (excluding primers), clustered the resulting sequences at 100% identity using CD-hitest (Li & Godzik 2006) and subsequently checked specificity of the fragments based on these clusters (see Table S3).

A subset of 22 (33%) of the species from Table S1 was chosen to test the consistency of PCR amplification across taxa *in vitro* in single amplifications DNA extractions from a single individual from each species were used for these tests after DNA concentrations were normalised to 5 ng/µl using a Nanodrop. PCR reagent concentrations were identical to those given above. Thermal cycling conditions consisted of an initial denaturation at 95°C for 2 minutes followed by 30 cycles with 15 sec at 95°C, 15 sec at the annealing temperature (48°C-56°C) and 20 sec at 72°C, and a final extension step of 5 min at 72°C. All species amplified in single reactions for both loci (Fig. S3). Normalised DNA from these species were also used to create 10 mock communities with different concentrations of DNA (Tables S4 and S5), which were sequenced together with the lake samples.

Library preparation

PCRs were performed in 25 µl volumes with Q5 High-Fidelity PCR Kit (New England Biolabs, UK) containing: 1X Master Mix, 0.5 µM of each tagged primer and 2.5 µl template DNA (equivalent to approximately 10 ng). PCRs were performed on an Applied Biosystems Veriti Thermal Cycler with the following profile: 98 °C for 30 min, 40 cycles of 98 °C for 10 sec, 50 °C for 15 sec and 72 °C for 20 sec, followed by a final elongation step at 72 °C for 5 min. PCR products were checked on ethidium bromide-stained agarose gels. PCRs were performed in triplicate and replicates pooled for sequencing.

Mock communities

All species were detected in the mock communities with the exception of *P. pungitius* at CytB (Tables S4 and S5). Two other species were represented by very low number of sequence reads: *Lepomis gibbosus* for 12S (125 reads), and *G. gobio* (32 reads) for CytB. On each occasion when the species *A. nebulosus, Coregonus albula, Leuciscus leuciscus* and *Salmo trutta* were present in a CytB mock community there was also a significant genus level assignment to *Almeirerus, Coregonus, Leuciscus* and *Salmo* respectively. We therefore interpreted both the species and the

Molecular Ecology

genus level assignments as belonging to the individual species (see Table S5). On the whole though there was reasonable consistency between observed and expected number of sequence reads in the mock communities for both loci (12S $\chi^2 = 0.224$, df = 21, P > 0.05; CytB $\chi^2 = 0.367$, df = 21, P > 0.05, Fig. S4). Remaining variation between expected and observed sequence reads could be caused either by PCR bias or unequal template DNA quality. Standardised sequences reads (i.e. per ng DNA in the PCR template) were highly correlated between the two data sets suggesting that a significant proportion of this bias might be attributed to variation in DNA quality and/or inaccurate DNA quantification (Fig. S4c). Further stochastic variation might have been introduced because only one individual per species was used and the age of the tissue extract varied between 1 week and > 10 years.

Determining a threshold for defining the presence of species at individual sites

False positive records (defined by the false detection of species where eDNA is not present) can arise from a variety of sources, including carryover of eDNA on sampling and filtering equipment, laboratory contamination or barcode missassignment. Evidence is accumulating that the latter is the norm rather than the exception in metabarcoding studies but usually results in records of low frequency. The number of low frequency false positives can be reduced by applying a threshold value, i.e. a minimum frequency in the sample from which a record is accepted as positive. We used sequence data from the mock communities to inform a decision regarding a suitable threshold level for analysis of the lake fish data. On average eight false positives (i.e sequences of species not added to the mock community) were found in each of the ten 12S mock communities (Table S4) and five in the CytB mock communities (Table S5). These were largely species present in the other mock communities. Most of these were present at a very low frequency and the number of false positives dropped quickly when increasing the threshold level (Fig. S5). At a threshold of 0.001 and 0.002 for 12S and Cytb respectively over 90% of false positives were omitted from the data (Th90) and a threshold of 0.003 and 0.01 was required in order eliminate all false positives from the data (Th100). We also tested the impact of these different thresholds on detection of species in Windermere (Fig. S6). We provisionally identified 12S sequences from 20 species in Windermere, 10 species in Bassenthwaite Lake and 12 species in Derwent Water but a number of species were represented by only a few sequences per site. False positive results from sequencing error or low level cross contamination pre or post PCR could explain these rare sequences. A very similar picture emerged using CytB sequence

data, although fewer species were identified, with a total of 16 species in Windermere, 11 species in Bassenthwaite Lake and 6 species in Derwent Water. We therefore empirically investigated a range of threshold values for detection for both loci. At Th90 the number of species detected in Windermere decreased from 21 to 19 for 12S and from 16 to 15 for CytB. For both markers the species "lost" at this threshold level were species not previously recorded (i.e. potential false negatives). At Th100 the species count decreased to 16 for 12S and 14 for CytB. Again only species not previously not recorded were lost from the 12S data set but the species lost from the CytB data set, B. barbatula, was previously recorded in Windermere and is likely to represent a true positive. These results were similar for Derwent Water, where two previously recorded species were lost at Th100, and Bassenthwaite Lake where one previously recorded species was lost (data not shown). We quanitifed PhiX contamination in the raw sequence reads for each sample as a proxy for the extent of tag jumping in the respective library using the MITObim pipeline (Hahn et al. 2013). PhiX phage genomic DNA is added routinely to Illumina metabarcoding runs in order to increase sequence diversity, but since it does not contain universal identifier tags it can only be assigned to target samples through "tag" jumping during the sequencing process. MITObim 1.8 was run for a single iteration using the nucleotide sequence of PhiX (Gebank accession: J02482) as bait. For each sample/library we recorded the proportion of sequences mapping to the PhiX reference, with a maximum number of mismatches smaller than 15% of read length. The data show that PhiX contamination was on average lower in the CytB library (median = 0.00002) compared to the 12S library (median 0.0007) but the maximum value was higher in CytB (0.0210) compared to 12S (0.0023, Fig. S7).

Fish abundance and distribution estimated from established method surveys

In September 2014, the gill-netting survey produced a total of 191 individuals at Bassenthwaite Lake, 202 individuals at Derwent Water, 627 individuals at Windermere North Basin and 525 individuals at Windermere South Basin (Table S6). Note that while *S. alpinus* was not recorded in this survey of September 2015, probably because of the relatively low sampling effort in the context of this rare species, they were recorded using more intensive but non-destructive specialised gill netting on a spawning ground in Windermere North Basin during the following autumn of 2014 as described by Winfield et al. (2015).

Molecular Ecology

The total fish species lists for Bassenthwaite Lake, Derwent Water and Windermere comprised 10, 9 and 16 species, respectively, as shown together with the expert opinion abundance score for each species (presented separately for the two basins of Windermere in Table S6).

In addition to the above species known to be present as native or introduced populations, a number of further species have been recorded at each lake being used as live-bait prior to the local banning of the use of freshwater fish as live- or dead-bait in 2002 as described by Winfield and Durie (2004). It is possible that some of these species have subsequently established small populations yet to be detected by survey gill nets or other forms of biological sampling. At Bassenthwaite Lake these potential populations comprise *Cyprinus carpio, Oncorhynchus mykiss* and *Scardinius erythrophthalmus*, while at Windermere they comprise *Carassius carassius, Leuciscus leuciscus, Thymallus thymallus* and *O. mykiss*. Furthermore *Gasterosteus aculeatus* has been recorded at many Cumbrian lakes and although they have not been caught during routine surveys in Bassenthwaite Lake and Derwent Water they are likely to be present there.

Supplementary Tables

Table S1: List of species included in Reference database

Scientific Name	Common	Code	Previously	Species	128
	Name		recorded in	number in	sequenced
			study lakes	Fig. S2	during
					current
					project
Abramis brama	Common	BRE	Yes	5	Yes
	bream				
Acipenser sturio	Common	STU			
	sturgeon				
Alburnoides bipunctatus	Schneider	SCH			
Alburnus alburnus	Bleak	BLE		20	Yes
Alosa alosa	Allis shad	ASH			
Alosa fallax	Twaite shad	TSH			
Ambloplites rupestris	Rock bass	RBA			
Ameiurus melas	Black	BLB			
	bullhead				
Ameiurus nebulosus	Brown	BRB		17	Yes
	bullhead				
Anguilla anguilla	European eel	EEL	Yes		
Aspius aspius	Asp				
Barbatula barbatula	Stone loach	LOA	Yes		Yes
Barbus barbus	Barbel	BAR		21	Yes
Blicca bjoerkna					
(=Abramis bjorkna)					
Carassius auratus	Goldfish	GOL		18	
Carassius carassius	Crucian carp	CRU			
Chondrostoma nasus	Nase	NAS			
Cobitis taenia	Spined loach	SLO			
Coregonus albula	Vendace	VEN	Yes	4	Yes

Coregonus autumnalis	Pollan	POL			Yes
Coregonus lavaretus	Whitefish	WHI			
Coregonus oxyrinchus	Houting	HOU			
Cottus gobio	Bullhead	BUL	Yes	23	Yes
Ctenopharyngodon	Grass carp	GCA			
idella					
Cyprinus carpio	Common carp	CAR	No	10	Yes
Esox lucius	Pike	PIK	Yes	1	Yes
Gasterosteus aculeatus	Three-spined	3SS	Yes		
	stickleback				
Gobio gobio	Gudgeon	GUD		19	Yes
Gymnocephalus cernuus	Ruffe	RUF	Yes	2	Yes
Hypophthalmichthys	Silver carp	SCA			
molitrix					
Hypophthalmichthys	Bighead carp	BCA			
nobilis					
T (1 · · · 1 ·	D:		X 7		
Lampetra fluviatilis	River lamprey	KLA	Yes		
Lampetra fluviatilis Lampetra planeri	Brook	RLA BLA	Yes		
Lampetra fluviatilis Lampetra planeri	Brook lamprey	RLA BLA	Yes		
Lampetra fluviatilis Lampetra planeri Lepomis gibbosus	Brook lamprey Pumpkinseed	RLA BLA PUM	Yes	11	Yes
Lampetra fluviatilis Lampetra planeri Lepomis gibbosus Leucaspius deliniatus	River lamprey Brook lamprey Pumpkinseed Sunbleak	RLA BLA PUM SUN	Yes	11 12	Yes
Lampetra fluviatilis Lampetra planeri Lepomis gibbosus Leucaspius deliniatus Leuciscus idus	River lamprey Brook lamprey Pumpkinseed Sunbleak Orfe	RLA BLA PUM SUN ORF	Yes	11 12	Yes Yes
Lampetra fluviatilis Lampetra planeri Lepomis gibbosus Leucaspius deliniatus Leuciscus idus Leuciscus leuciscus	River lamprey Brook lamprey Pumpkinseed Sunbleak Orfe Dace	RLA BLA PUM SUN ORF DAC	Yes	11 12 22	Yes Yes Yes
Lampetra fluviatilis Lampetra planeri Lepomis gibbosus Leucaspius deliniatus Leuciscus idus Leuciscus leuciscus Lota lota	River lamprey Brook lamprey Pumpkinseed Sunbleak Orfe Dace Burbot	RLA BLA PUM SUN ORF DAC BUR	Yes	11 12 22	Yes Yes Yes
Lampetra fluviatilis Lampetra planeri Lepomis gibbosus Leucaspius deliniatus Leuciscus idus Leuciscus leuciscus Lota lota Micropterus salmoides	River lamprey Brook lamprey Pumpkinseed Sunbleak Orfe Dace Burbot Largemouth	RLA BLA PUM SUN ORF DAC BUR LBA	Yes	11 12 22	Yes Yes Yes
Lampetra fluviatilis Lampetra planeri Lepomis gibbosus Leucaspius deliniatus Leuciscus idus Leuciscus leuciscus Lota lota Micropterus salmoides	River lamprey Brook lamprey Pumpkinseed Sunbleak Orfe Dace Burbot Largemouth bass	RLA BLA PUM SUN ORF DAC BUR LBA	Yes	11 12 22	Yes Yes Yes
Lampetra fluviatilis Lampetra planeri Lepomis gibbosus Leucaspius deliniatus Leuciscus idus Leuciscus leuciscus Lota lota Micropterus salmoides Misgurnus fossilis	River lamprey Brook lamprey Pumpkinseed Sunbleak Orfe Dace Burbot Largemouth bass Weather loach	RLA BLA PUM SUN ORF DAC BUR LBA	Yes	11 12 22	Yes Yes Yes
Lampetra fluviatilis Lampetra planeri Lepomis gibbosus Leucaspius deliniatus Leuciscus idus Leuciscus leuciscus Lota lota Micropterus salmoides Misgurnus fossilis Neogobius kessleri	River lamprey Brook lamprey Pumpkinseed Sunbleak Orfe Dace Burbot Largemouth bass Weather loach Bighead goby	RLA BLA PUM SUN ORF DAC BUR LBA WLO BGO	Yes	11 12 22	Yes Yes Yes
Lampetra fluviatilis Lampetra planeri Lepomis gibbosus Leucaspius deliniatus Leuciscus idus Leuciscus leuciscus Lota lota Micropterus salmoides Misgurnus fossilis Neogobius kessleri Neogobius	River lamprey Brook lamprey Pumpkinseed Sunbleak Orfe Dace Burbot Largemouth bass Weather loach Bighead goby Round goby	RLA BLA PUM SUN ORF DAC BUR LBA WLO BGO RGO	Yes	11 12 22	Yes Yes Yes
Lampetra fluviatilis Lampetra planeri Lepomis gibbosus Leucaspius deliniatus Leuciscus idus Leuciscus leuciscus Lota lota Micropterus salmoides Misgurnus fossilis Neogobius kessleri Neogobius melanostomus	River lamprey Brook lamprey Pumpkinseed Sunbleak Orfe Dace Burbot Largemouth bass Weather loach Bighead goby Round goby	RLA BLA PUM SUN ORF DAC BUR LBA WLO BGO RGO	Yes	11 12 22	Yes Yes Yes
Lampetra fluviatilis Lampetra planeri Lepomis gibbosus Leucaspius deliniatus Leuciscus idus Leuciscus leuciscus Lota lota Micropterus salmoides Misgurnus fossilis Neogobius kessleri Neogobius melanostomus Oncorhynchus	River lamprey Brook lamprey Pumpkinseed Sunbleak Orfe Dace Burbot Largemouth bass Weather loach Bighead goby Round goby	RLA BLA PUM SUN ORF DAC BUR LBA WLO BGO RGO PSA	Yes	11 12 22	Yes Yes Yes

Oncorhynchus mykiss	Rainbow trout	RTR			
Osmerus eperlanus	Smelt	SME			
Perca fluviatilis	Perch	PER	Yes	3	Yes
Petromyzon marinus	Sea lamprey	SLA	Yes		
Phoxinus phoxinus	Minnow	MIN	Yes	8	Yes
Pimephales promelas	Fathead	FMI			
	minnow				
Platichthys flesus	Flounder	FLO			Yes
Proterorhinus	Western	WTG			
semilunaris	tubenose goby				
Pseudorasbora parva	Topmouth	TMG		13	Yes
	gudgeon				
Pungitius pungitius	Nine-spined	9SS		14	Yes
	stickleback				
Rhodeus sericeus	Bitterling	BIT			
Rutilus rutilus	Roach	ROA	Yes	6	
Salmo salar	Atlantic	SAL	Yes		
	salmon				
Salmo trutta	Brown trout	BTR	Yes	7	Yes
Salvelinus alpinus	Arctic charr	CHA	Yes		
Salvelinus fontinalis	Brook charr	BCH			
Sander lucioperca	Pikeperch	ZAN			
	(zander)				
Scardinius	Rudd	RUD	Yes	15	Yes
erythrophthalmus					
Siluris glanis	Wels catfish	WCA			
Squalius cephalus	Chub	CHU	Yes		Yes
(=Leuciscus cephalus)					
Thymallus thymallus	Grayling	GRA			
Tinca tinca	Tench	TEN	Yes	9	Yes
Umbra pygmaea	Mudminnow	MUD		16	
Vimba vimba	Vimba bream	VBR			

Page 51 of 157

Primer	Sequence 5'-3'	Reference
teleo_F	ACACCGCCCGTCACTCT	Valentini et al. 2015
teleo_Rdeg	CTTCCGGTACACTTACCRTG	Valentini et al. 2015
128_F1	ACTGGGATTAGATACCCC	Kelly et al. 2014
12S_R1	TAGAACAGGCTCCTCTAG	Kelly et al. 2014
Fish2bCBR	GATGGCGTAGGCAAACAAGA	Thompson et al. 2012
Fish2CBL	ACAACTTCACCCCTGCAAAC	Thompson et al. 2012
Fish2degCBL	ACAACTTCACCCCTGCRAAY	Thompson et al. 2012
Fish2CBR	GATGGCGTAGGCAAATAGGA	Thompson et al. 2012
CytB_L14841	AAAAACCACCGTTGTTATTCAACTA	Kocher et al. 1989
CytB_15149R	GCDCCTCARAATGAYATTTGTCCTCA	Kocher et al. 1989

Table S2: Sequences and references of primers tested in this study

Table S3: Summary of *in silico* testing results

Unresolved species pairs: 1 = Coregonus; 2 = Hypophthalmichthys nobilis, H. molitrix; 3 = Ctenopharyngodon idella, H. molitrix; 4 = Ameiurus melas, A. nebulosus; 5 = Leuciscus idus, L. leuciscus; 6 = Salvelinus alpinus, S. fontinalis, 7 = Alosa fallax, A. alosa, 8 = Perca fluviatilis, Sander lucioperca: 9 = Lampetra planeri, L. fluviatilis

Target region	Forward primer	Reverse primer	Length	% Species amplified	Unresolved species pairs	Reference
12S	teleo_F	teleo_R	~70 bp	74	1, 2, 4, 5, 6	Valentini et al. 2015
12S	12S_F1	12S_R1	~106 bp	77	1, 2, 3, 6, 8	Kelly et al. 2014
CytB	Fish2bCBR	Fish2CBL	40 bp	16	1, 2, 4, 6, 9	Thompson et al. 2012
CytB	Fish2degCBL	Fish2CBR	40 bp	23	1, 2, 4, 6, 9	Thompson et al. 2012
CytB	CytB_L14841	CytB_15149R	460 bp	91	1, 2, 5, 9	Kocher et al 1989

Table S4: Total sequence reads in individual 12S mock communities. Green colours indicate species which were added to the community and the amount of DNA added (see legend below). Orange and brown colours indicate false positives and their frequencies (see legend below)

Species	MC01	MC02	MC03	MC04	MC05	MC06	MC07	MC08	MC09	MC10
A. brama	8985	3	4736	5238	0	19987	12	1224	13454	4
A. alburnus	3629	2721	36	0	5076	399	506	50	0	6368
A. nebulosus	7913	0	13	14	6582	1618	0	29	0	1655
B. barbus	0	3611	4935	0	3	0	7686	1062	0	0
Coregonus spp	290	0	329	451	0	2475	0	63	38	3
C. gobio	3678	0	7	5	3022	10055	0	4	0	986
C. carpio	3284	4392	31	30	6250	692	848	101	33	8654
E. lucius	3541	9	3187	6142	0	409	14	4224	4588	0
G. gobio	0	2606	0	0	10	0	347	0	0	14
G. cernua	8	8172	6421	10379	0	59	9925	14600	1159	0
L. gibbosus	0	64	0	0	38	0	15	0	0	8
L. delineatus	0	4	11889	0	0	0	5	23635	0	0
L. leuciscus	5	7029	0	0	6297	3	1598	41	0	8380
P. fluviatilis	0	2847	0	3319	0	5	2504	0	4780	0
P. phoxinus	4	5	5279	6505	0	13	8	624	6746	3
P. parva	19	3447	15	33	3475	0	5731	29	34	342
P. pungitius	4	0	0	9	4128	4	0	11	3	882
R. rutilus	0	3124	3	2163	6	0	973	0	396	4
S. trutta	3	19	4219	5802	0	10	7	8005	6454	0
S. cephalus	5248	6_	0	6354	7	9891	5	0	648	15
T. tinca	983	3_	527	667	0	1094	3_	125	77	0
U. pygmaea	1426	3	1793	6	0	461	3	2174	0	3
A. anguilla	0	0	7	0	0	0	0	0	0	0
B. bjoerkna	3	0	3	0	0	4	0	0	7	0
H. molitrix	8	0	0	0	0	6	0	0	0	0
L. idus	0	0	0	0	3	0	0	0	0	4
S.	157	27	02	0	66	41	25	02	2	11
eryinrophinaimus	12049	22801	12202	10242	19476	41	10220		10947	11021
Total	13748	23091 61092	12373	57460	104/0	56002	19320	(433	1084/	11031
R. rutilus S. trutta S. cephalus T. tinca U. pygmaea A. anguilla B. bjoerkna H. molitrix L. idus S. erythrophthalmus nohit Total	0 3 5248 983 1426 0 3 8 0 3 8 0 157 13948 53136	3124 19 6 3 3 0 0 0 0 0 0 0 27 23891 61983	3 4219 0 527 1793 7 3 0 0 0 83 12393 55906	2163 5802 6354 667 6 0 0 0 0 0 8 10343 57468	6 0 7 0 0 0 0 0 0 0 3 66 18476 53439	0 10 9891 1094 461 0 4 6 0 4 1 9657 56883	973 7 5 3 3 0 0 0 0 0 0 25 19320 49535	0 8005 0 125 2174 0 0 0 0 0 83 7433 63517	396 6454 648 777 0 0 7 0 0 0 3 10847 49267	4 0 15 0 3 0 0 0 4 11 11031 38367

5 ng DNA added to mock community

0.5 ng DNA added to mock community

False positive < 0.001

False positive < 0.003

Table S5: Total sequence reads in individual CytB mock communities. Green colours indicate species which were added to the community and the amount of DNA added (see legend below). Orange and brown colours indicate false positives and their frequencies (see legend below).

Species	MC01	MC02	MC03	MC04	MC05	MC06	MC07	MC08	MC09	MC10
A. brama	8193	26	10769	15074	393	18219	14	4124	22141	36
A. alburnus	1860	765	0	0	2232	136	70	8	96	7615
Ameirurus total	12168	0	42	37	9492	1678	10	107	373	2850
B. barbus	0	2526	3533	0	0	3	5619	1486	0	0
Coregonus total	76	0	124	170	4	285	0	39	23	0
C. gobio	1864	0	5	0	4704	7118	0	4	63	779
C. carpio	7059	9349	80	180	16713	2874	4030	314	442	17813
E. lucius	2467	16	4642	9733	0	60	16	4784	6859	3
G. gobio	0	32	0	0	0	0	0	0	0	0
G. cernua	3	2851	3123	5646	0	0	5306	7071	510	0
L. gibbosus	4	8828	59	0	5196	0	15178	100	4	1133
L. delineatus	0	10	8216	0	0	0	0	7624	0	3
Leuciscus total	0	368	0	0	106	0	34	0	0	621
P. fluviatilis	10	2197	0	3521	0	0	4792	0	3782	0
P. phoxinus	3	3	2307	2295	0	0	0	138	3130	0
P. parva	0	1340	0	0	923	0	2158	7	11	185
P. pungitius	0	0	0	0	0	0	0	0	0	0
R. rutilus	0	149	0	155	0	0	23	0	13	0
Salmo total	6	10	2312	2383	0	0	7	4171	3460	0
S. cephalus	2046	0	0	2920	83	3898	0	0	400	7
Tinca tinca	273	0	345	296	0	55	0	33	37	4
U. pygmaea	1788	10	4827	13	26	860	13	12943	49	0
A. anguilla	0	3	0	0	0	0	0	0	0	0
<i>S.</i>	7	0	20	7	0	2	0	20	2	0
<i>erythrophthalmus</i>	216	0	30	252	0	200	0	38	271	0
Cyprinidae	216	0	276	352	0	300	106	63 157	3/1	0
Percidae	0	57	46	119	0	0	196	157	18	0
Salmonidae	0	0	3	6	0	0	0	0	0	0
Clupeocephala	0	0	0	0	135	0	0	9	0	0
Percinae	0	208	17	481	0	0	401	0	511	0
nohit	6921	4190	2638	5295	3285	5336	3519	3362	1981	3929
Total	44964	32938	43394	48683	43292	40825	41386	46582	44277	34978

10 ng DNA added to mock community

5 ng DNA added to mock community

0.5 ng DNA added to mock community

False positive < 0.002

False positive < 0.01

Table S6: Summary of species abundance data from established method survey for the four Cumbrian lake basins. Left, relative abundance rank based on long-term monitoring data; right (in brackets) number of individuals caught in a gill netting survey in September 2014.

	Bassenth	waite	Derwent	Water	Windermere North		Windermere South		
	Lake				Basin		Basin		
Arctic charr					3		6		
Atlantic salmon	9				9		11		
Brown trout	6	(2)	7	(1)	5	(12)	4	(6)	
Bullhead					8		10		
Common bream					12		7		
Dace	7	(2)	9						
Eel	4		8		6		5		
Minnow	8		4		7		9		
Perch	1	(78)	1	(132)	1	(595)	1	(477)	
Pike	5	(1)	6	(1)	4	(5)	3	(4)	
River lamprey					15		15		
Roach	3	(38)	2	(30)	2	(15)	2	(38)	
Rudd					14		14		
Ruffe	2	(68)	3	(22)					
Sea lamprey					16		16		
Stone loach					10		12		
Tench					13		8		
Three-spined					11		12		
stickleback					11		15		
Vendace	10	(2)	5	(16)					
Total number of species recorded	10	(7)	9	(5)	16	(4)	16	(4)	

Domain	Family	12S	CytB
Bacteria	Acidobacteriaceae	yes	no
Bacteria	Clostridiales Family XVII.	ves	no
Bacteria	Coriobacteriaceae	yes	no
Bacteria	Opitutaceae	yes	no
Bacteria	Peptococcaceae	yes	no
Bacteria	Planctomycetaceae	yes	no
Bacteria	Prochlorococcaceae	yes	no
Bacteria	Sphingomonadaceae	yes	no
Bacteria	Verrucomicrobiaceae	yes	no
Eukaryota	Anatidae	yes	no
Eukaryota	Anguillidae	yes	yes
Eukaryota	Balitoridae	yes	no
Eukaryota	Bovidae	yes	yes
Eukaryota	Canidae	yes	no
Eukaryota	Cervidae	yes	yes
Eukaryota	Cichlidae	yes	no
Eukaryota	Clupeidae	yes	no
Eukaryota	Columbidae	yes	no
Eukaryota	Cricetidae	yes	yes
Eukaryota	Cyprinidae	yes	yes
Eukaryota	Esocidae	no	yes
Eukaryota	Felidae	yes	no
Eukaryota	Gadidae	yes	no
Eukaryota	Gasterosteidae	no	yes
Eukaryota	Hominidae	yes	yes
Eukaryota	Leporidae	yes	no
Eukaryota	Moronidae	no	yes
Eukaryota	Muridae	yes	yes
Eukaryota	Mustelidae	yes	no
Eukaryota	Nemacheilidae	yes	no
Eukaryota	Percidae	yes	yes
Eukaryota	Phalacrocoracidae	yes	no
Eukaryota	Phasianidae	yes	no
Eukaryota	Rallidae	yes	no
Eukaryota	Ranidae	yes	no
Eukaryota	Salamandridae	yes	no
Eukaryota	Salmonidae	yes	yes
Eukaryota	Sciuridae	yes	no
Eukaryota	Scolopacidae	yes	no
Eukaryota	Scombridae	yes	no
Eukaryota	Soricidae	yes	no
Eukaryota	Strigidae	yes	no

 Table S7: Overview of families detected in the 12S and CytB data set respectively.

Supplementary Figures

Fig. S1: Sampling

a) boat and b) Friedinger sampler attached to winch (used for sampling on Windermere); c) pooling subsamples in sterile 2 L plastic bottles; d) sterile collection bottles; e) treatment of equipment with 10% bleach; f) water filtration units at Freshwater Biological Association laboratory, Far Sawrey, Windermere, UK. All photographs taken by the authors.

Fig. S2: Maximum Likelihood Phylogenies used to evaluate utility of loci for species resolution in *in silico* testing.

a) ML tree of the all 12S sequences from the reference data base (supplied in a separate file)

b) ML tree of the all Cytb sequences from the reference data base (supplied in a separate file)

Fig S3: Results of *in vitro* tests (single species amplifications) of the two chosen primer combinations A) Cytb Kocher *et al.* (1989), B) 12S Kelly *et al.* (2014).

PCR products were run on 2.5% agarose gels, and stained with ethidium bromide. Numbers indicate different species and correspond to those in Table S1

Fig. S4: Mock community results

A) 12S and B) CytB mock community data. Bar plots show comparison of observed (number of sequence reads) and expected (DNA concentrations) data for combined mock communities. C) Correlation between read count per nanogram of DNA for 12S and CytB in the combined mock communities.

C) Comparison of 12S and CytB for mock communities

(Number of sequence reads per ng DNA)

Fig. S5: Proportion of total false positives retained at different threshold levels for the 12S (a) and CytB (b) mock community data. The red vertical line indicates the threshold level used to analyse the lake samples

Fig. S6: Site occupancy across 29 sites in Windermere based on 12S (a) and CytB (b) using three different thresholds for defining "presence". In a) and b) dark blue corresponds to the site occupancy data when no detection threshold is used. Medium blue corresponds to the thresholds used in the main analyses (0.001 for 12S and 0.002 for CytB). Light blue corresponds to the threshold needed to eradicate false positives in the mock communities (0.003 in 12S and 0.01 for CytB). All species which can potentially occur in the study lakes and all species which were included in the mock communities (identified by an asterisk) are represented in the figure.

Fig. S7: Cumulative frequency distribution of relative PhiX read counts in the raw sequence data of the 12S libraries (a) and CytB libraries (b). Note that the y-axis ranged was capped at to 0.005 so the maximum value for CytB (0.0201) is not shown in figure (b)

Fig. S8: Correlations between 12S and Cytb in terms of site occupancy ("SO", a-d) and read count ("RC", e-h) data. Abbreviations adjacent to scatter points correspond to species, and are explained in the List of Abbreviations in Table S1.

Fig. S9: Correlations between site occupancy and read count data per basin for 12S (a-d) and CytB (e-h)

Fig. S10: a) Read count and b) proportion of sequence reads by lake basin. Species highlighted with an asterisk have not been previously recorded in the lake basin. Previously-recorded species are ordered according to their long term rank.

a)

3

b)

Fig. S11: Correlations between read count ("number of sequence reads") and long term rank (with "1" corresponding to the most abundant species). Dashed lines indicate non significant trends. Three letter codes correspond to species and are listed in Table S1.

3

3

Fig. S12: Correlations between site occupancy and 2014 gill net numbers. Dashed lines indicate non significant trends. Three letter codes correspond to species and are listed in Table S1.

Fig. S13: Correlations between read count ("number of sequence reads") and 2014 gill net numbers. Dashed lines indicate non significant trends. Three letter codes correspond to species and are listed in Table S1.

Fig. S14: Distribution of eDNA sequence reads in each of the depth profile transects

Fig. S15: Spatial Distribution of species recorded in Windermere North and South Basins at more than 2 sites (Site Occupancy) using 12S data

Additional file information:

Appendix 1-4 Complete list of retained sequences for the curated non-redundant (nr) reference databases (provided in an excel spreadsheet)

Appendix 1: Sequence count data for the 12S primer data set

Appendix 2: Sequence count data for the CytB primer data set

Appendix 3: Genbank accession numbers and taxon affiliations of curated 12S sequences

Appendix 4: Genbank accession numbers and taxon affiliations of curated CytB sequences

Appendix 5: Flow chart of steps taken during the method development and full analytical pipeline stages.

References:

- Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. *Bioinformatics* **25**, 1972-1973.
- Hahn C, Bachmann L, Chevreux B (2013) Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach. Nucleic Acids Res. 41(13): e129.
- Ficetola G, Coissac E, Zundel S, *et al.* (2010) An In silico approach for the evaluation of DNA barcodes. *Bmc Genomics* **11**, 434.
- Katoh K, Standley DM (2013) MAFFT Multiple Sequence Alignment Software Version
 7: Improvements in Performance and Usability. *Molecular Biology and Evolution* 30, 772-780.
- Sayers E (2008) E-utilities Quick Start. In: Entrez Programming Utilities Help Bethesda (MD): National Center for Biotechnology Information (US); 2010-. Available from: <u>http://www.ncbi.nlm.nih.gov/books/NBK25500/</u>.

- Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. *Bioinformatics* **22**, 2688-2690.
- Suyama M, Torrents D, Bork P (2006) PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. *Nucleic Acids Research* **34**, 609-612.
- Szitenberg A, John M, Blaxter ML, Lunt DH (2015) ReproPhylo: An Environment for Reproducible Phylogenomics. *PLoS Comput Biol* **11**, e1004447.
- Winfield IJ, Durie NC (2004) Fish introductions and their management in the English Lake District. *Fisheries Management and Ecology* **11**, 195-201.
- Winfield IJ, Fletcher JM, James JB (2015) Monitoring the fish populations of Windermere, 2014. Report to United Utilities. LA/NEC05364/2. 66pp.

species	accession
Abramis brama	AP009305.1
Abramis brama	KC894466.1
Abramis brama	denovo17
Abramis brama	denovo18
Acipenser sturio	AF004980.1
Acipenser sturio	AY544145.1
Acipenser sturio	FN256366.1
Acipenser sturio	Y12663.1
Alburnoides bipunctatus	Y12665.1
Alburnus alburnus	AB239593.1
Alburnus alburnus	AJ002629.1
Alburnus alburnus	denovo16
Alosa alosa	AP009131.1
Alosa fallax	EU552656.1
Ambloplites rupestris	KM273799.1
Ambloplites rupestris	KM282394.1
Ameiurus melas	DQ421854.1
Ameiurus melas	DQ421855.1
Ameiurus melas	JN015532.1
Ameiurus nebulosus	AY430252.1
Ameiurus nebulosus	JX899750.1
Ameiurus nebulosus	denovo28
Anguilla anguilla	AF266494.1
Anguilla anguilla	AF266495.1
Anguilla anguilla	AF454706.1
Anguilla anguilla	AP007233.1
Anguilla anguilla	FJ612585.1
Anguilla anguilla	KJ564227.1
Anguilla anguilla	KJ564228.1
Anguilla anguilla	KJ564230.1
Anguilla anguilla	KJ564239.1
Anguilla anguilla	KJ564240.1
Anguilla anguilla	KJ564245.1
Anguilla anguilla	KJ564247.1
Anguilla anguilla	KJ564250.1
Anguilla anguilla	KJ564253.1
Anguilla anguilla	KJ564254.1
Anguilla anguilla	KJ564255.1
Anguilla anguilla	KJ564257.1
Anguilla anguilla	KJ564268.1
Anguilla anguilla	KJ564269.1
Barbatula barbatula	denovo13
Barbatula barbatula	denovo14
Barbatula barbatula	denovo15
Barbatula barbatula	denovo29
Barbus barbus	AB238965.1

Barbus barbus	Y12666.1
Barbus barbus	denovo12
Blicca bjoerkna	AF038468.1
Blicca bjoerkna	AP009304.1
Carassius auratus	AB006953.1
Carassius auratus	AB111951.1
Carassius auratus	AB379915.1
Carassius auratus	FJ817301.1
Carassius auratus	FJ817319.1
Carassius auratus	GU086395.1
Carassius auratus	GU086397.1
Carassius auratus	HQ875340.1
Carassius auratus	KF147851.1
Carassius auratus	KJ476998.1
Carassius auratus	KM657132.1
Carassius auratus	KM657133.1
Carassius carassius	JQ911695.1
Chondrostoma nasus	DQ447667.1
Chondrostoma nasus	DQ455047.1
Cobitis taenia	AJ001795.1
Cobitis taenia	AJ001797.1
Cobitis taenia	AJ001798.1
Coregonus albula	denovo27
Coregonus lavaretus	JQ661382.1
Coregonus lavaretus	JQ661390.1
Coregonus lavaretus	JQ661446.1
Coregonus lavaretus	JQ661474.1
Coregonus lavaretus	JQ661479.1
Coregonus lavaretus	JQ661480.1
Coregonus oxyrinchus	JQ661401.1
Cottus gobio	AB188189.1
Cottus gobio	denovo26
Ctenopharyngodon idella	AY897013.1
Ctenopharyngodon idella	EU391390.1
Ctenopharyngodon idella	HQ891005.1
Ctenopharyngodon idella	JQ231115.1
Ctenopharyngodon idella	KC292921.1
Ctenopharyngodon idella	KC292922.1
Cyprinus carpio	AP009047.1
Cyprinus carpio	JN105352.1
Cyprinus carpio	JN105357.1
Cyprinus carpio	JX188253.1
Cyprinus carpio	JX188254.1
Cyprinus carpio	KC292935.1
Cyprinus carpio	KF856964.1
Cyprinus carpio	KF856965.1
Cyprinus carpio	NC_001606.1

Cyprinus carpio	denovo11
Esox lucius	AP004103.1
Esox lucius	AY430273.1
Esox lucius	FJ425098.1
Esox lucius	HM177472.1
Esox lucius	HM177473.1
Esox lucius	HM177474.1
Esox lucius	HM177475.1
Esox lucius	denovo10
Esox lucius	denovo31
Esox lucius	denovo9
Gasterosteus aculeatus	AP002944.1
Gasterosteus aculeatus	AY283316.1
Gasterosteus aculeatus	AY283317.1
Gasterosteus aculeatus	AY283318.1
Gasterosteus aculeatus	KM273828.1
Gasterosteus aculeatus	KM282418.1
Gobio gobio	AB239596.1
Gobio gobio	denovo7
Gobio gobio	denovo8
Gymnocephalus cernuus	AY141373.1
Gymnocephalus cernuus	KM978956.1
Gymnocephalus cernuus	denovo25
Hypophthalmichthys mol	AM778105.1
Hypophthalmichthys mol	FU315941.1
Hypophthalmichthys mol	10231114.1
Hypophthalmichthys mol	KC292923.1
Hypophthalmichthys mol	KC292927.1
Hypophthalmichthys mol	KC292930.1
Hypophthalmichthys mol	KC292931.1
Hypophthalmichthys mol	KC292934.1
Hypophthalmichthys mol	KF384055 1
Hypophthalmichthys mol	KF384062.1
Hypophthalmichthys mol	KF384065 1
Hypophthalmichthys mol	KF384066 1
Hypophthalmichthys mol	KF384070 1
Hypophthalmichthys mol	KF384076 1
Hypophthalmichthys mol	KF384088 1
Hypophthalmichthys mol	KF38/091 1
Hypophthalmichthys mol	KF384093 1
Hypophthalmichthys mol	KI671//9 1
Hypophthalmichthys mol	KI671/150 1
Hypophthalmichthys mol	KI7/6052 1
Hypophthalmichthys mol	K174696/ 1
Hypophthalmichthys mol	K17/6065 1
Hypophthalmichthys MOI	
Hypophthalmichthys 1100	EII2/2722 1
	LO242/32.1

Hypophthalmichthys nob	HM162839.1
Hypophthalmichthys nob	KC292939.1
Hypophthalmichthys nob	KC292942.1
Hypophthalmichthys nob	KC292943.1
Hypophthalmichthys nob	KJ679504.1
Hypophthalmichthys nob	KJ729077.1
Hypophthalmichthys nob	KJ729078.1
Hypophthalmichthys nob	KJ756343.1
Lampetra fluviatilis	NC_001131.1
Lepomis gibbosus	JN655528.1
Lepomis gibbosus	KM273834.1
Lepomis gibbosus	KM282424.1
Lepomis gibbosus	denovo24
Leucaspius delineatus	AP009307.1
Leuciscus cephalus	denovo22
Leuciscus cephalus	denovo23
Leuciscus idus	AJ002632.1
Leuciscus idus	KF913024.1
Leuciscus idus	denovo6
Leuciscus leuciscus	denovo21
Lota lota	AJ002633.1
Lota lota	AP004412.1
Lota lota	KC844053.1
Lota lota	KM201364.1
Lota lota	KM363244.1
Micropterus salmoides	AF042480.1
Micropterus salmoides	AP014537.1
Micropterus salmoides	AY264837.1
Micropterus salmoides	DQ536425.1
Micropterus salmoides	HQ391896.1
Micropterus salmoides	KM273840.1
Oncorhynchus gorbuscha	EF455489.1
Oncorhynchus mykiss	AF113120.1
Oncorhynchus mykiss	AF113121.1
Oncorhynchus mykiss	AF125508.1
Oncorhynchus mykiss	DQ288268.1
Oncorhynchus mykiss	DQ288269.1
Oncorhynchus mykiss	FJ710971.1
Oncorhynchus mykiss	HM229293.1
Oncorhynchus mykiss	HM229294.1
Oncorhynchus mykiss	HM229295.1
Oncorhynchus mykiss	HM229299.1
Oncorhynchus mykiss	HM229311.1
Oncorhynchus mykiss	HQ167664.1
Oncorhynchus mykiss	KP085590.1
Oncorhynchus mykiss	L29771.1
Osmerus eperlanus	EU621493.1

Osmerus eperlanus	KC441957.1
Perca fluviatilis	AY141372.1
Perca fluviatilis	AY264836.1
Perca fluviatilis	FJ620130.1
Perca fluviatilis	FJ710973.1
Perca fluviatilis	FJ710974.1
Perca fluviatilis	JQ999988.1
Perca fluviatilis	KM410088.1
Perca fluviatilis	U87416.1
Perca fluviatilis	denovo20
Petromyzon marinus	U11880.1
Phoxinus phoxinus	AB671170.1
Phoxinus phoxinus	AP009309.1
Phoxinus phoxinus	KC992395.1
Pimephales promelas	AF126355.1
Pimephales promelas	AF126357.1
Pimephales promelas	AF126358.1
Pimephales promelas	AF126360.1
Pimephales promelas	AF126362.1
Pimephales promelas	AF126363.1
Pimephales promelas	AF126364.1
Pimephales promelas	KM282445.1
Platichthys flesus	AB125244.1
Platichthys flesus	EU075178.1
Ponticola kessleri	KM583832.1
Pseudorasbora parva	JF802126.1
Pseudorasbora parva	denovo4
Pseudorasbora parva	denovo5
Pungitius pungitius	AB445130.1
Pungitius pungitius	AF354987.1
Pungitius pungitius	AY283319.1
Pungitius pungitius	AY283320.1
Pungitius pungitius	denovo3
Pungitius pungitius	denovo30
Rhodeus sericeus	KM052222.1
Rhodeus sericeus	Y12671.1
Rutilus rutilus	AF038484.1
Rutilus rutilus	AJ002630.1
Rutilus rutilus	DQ447664.1
Rutilus rutilus	FJ188382.1
Salmo salar	AF133701.1
Salmo salar	AM931027.1
Salmo salar	EU643688.1
Salmo salar	EU643689.1
Salmo salar	EU851898.1
Salmo salar	FJ710984.1
Salmo salar	HM003530.1

Salmo salar	HQ167667.1
Salmo salar	HQ641696.1
Salmo salar	JN007547.1
Salmo salar	JN007548.1
Salmo salar	JQ390055.1
Salmo salar	JQ390056.1
Salmo salar	NC_001960.1
Salmo trutta	AM910409.1
Salmo trutta	EU048341.1
Salmo trutta	GU233801.1
Salmo trutta	JN007557.1
Salmo trutta	JN007558.1
Salmo trutta	KC441960.1
Salmo trutta	LC011387.1
Salmo trutta	denovo2
Salvelinus alpinus	AF154851.1
Salvelinus alpinus	AJ319819.1
Salvelinus alpinus	KP019987.1
Salvelinus alpinus	KP019988.1
Salvelinus alpinus	KP019993.1
Salvelinus alpinus	KP019994.1
Salvelinus fontinalis	AF154850.1
Sander lucioperca	AY372808.1
Sander lucioperca	JQ999990.1
Scardinius erythrophthalı	Y12668.1
Scardinius erythrophthalı	denovo19
Silurus glanis	AM398435.2
Squalius cephalus	Y12667.1
Thymallus thymallus	AY430255.1
Thymallus thymallus	FJ620118.1
Thymallus thymallus	FJ853655.1
Thymallus thymallus	GU233803.1
Tinca tinca	AB218686.1
Tinca tinca	denovo0
Tinca tinca	denovo1
Umbra pygmaea	AP013049.1
Umbra pygmaea	AY430270.1

Page	84	of	157
------	----	----	-----

species	accession
Abramis brama	AP009305.1
Abramis brama	AY028979.1
Abramis brama	AY028980.1
Abramis brama	AY028981.1
Abramis brama	JX965956.1
Abramis brama	KC894466.1
Abramis brama	KF552103.1
Abramis brama	Y10441.1
Acipenser sturio	AF006134.1
Acipenser sturio	AF006145.1
Acipenser sturio	AF006176.1
Acipenser sturio	AJ245839.1
Acipenser sturio	AJ428497.1
Acipenser sturio	FN256388.1
Acipenser sturio	FN256390.1
Acipenser sturio	FN256391.1
Acipenser sturio	FN256394.1
Alburnoides bipunctatu:	AF090742.1
Alburnoides bipunctatu:	HM173098.1
Alburnoides bipunctatu:	HM173099.1
Alburnoides bipunctatu:	HM173100.1
Alburnoides bipunctatu:	HM173101.1
Alburnoides bipunctatu:	HM173102.1
Alburnoides bipunctatu:	HM173103.1
Alburnoides bipunctatu:	HM173104.1
Alburnoides bipunctatu:	HM173105.1
Alburnoides bipunctatu:	HM173106.1
Alburnoides bipunctatu:	HM173107.1
Alburnoides bipunctatu:	HM173108.1
Alburnoides bipunctatu:	HM173109.1
Alburnoides bipunctatu:	HM173110.1
Alburnoides bipunctatu:	HM173111.1
Alburnoides bipunctatu:	HM173112.1
Alburnoides bipunctatu:	HM173113.1
Alburnoides bipunctatu:	HM173114.1
Alburnoides bipunctatu:	HM173115.1
Alburnoides bipunctatu:	HM173116.1
Alburnoides bipunctatu:	HM173117.1
Alburnoides bipunctatu:	HM173118.1
Alburnoides bipunctatu:	HM173119.1
Alburnoides bipunctatu:	HM173120.1
Alburnoides bipunctatu:	HM173121.1
Alburnoides bipunctatu:	HM1/3122.1
Alburnoides bipunctatu:	HM1/3123.1
Alburnoides bipunctatu:	HM1/3124.1
Alburnoides bipunctatu:	HM173125.1

Alburnoides bipunctatu	HM173126.1
Alburnoides bipunctatu	HM173127.1
Alburnoides bipunctatu	HM173128.1
Alburnoides bipunctatu	HM173129.1
Alburnoides bipunctatu	HM173130.1
Alburnoides bipunctatu	HM173131.1
Alburnoides bipunctatu	HM173132.1
Alburnoides bipunctatu	HM173133.1
Alburnoides bipunctatu	HM173134.1
Alburnoides bipunctatu	HM173135.1
Alburnoides bipunctatu	HM173136.1
Alburnoides bipunctatu	HM173166.1
Alburnoides bipunctatu	HM173167.1
Alburnoides bipunctatu	HM560059.1
Alburnoides bipunctatu	Y10445.1
Alburnus alburnus	AB239593.1
Alburnus alburnus	AF090745.1
Alburnus alburnus	DQ350254.1
Alburnus alburnus	HM560060.1
Alburnus alburnus	HM560061.1
Alburnus alburnus	HM560062.1
Alburnus alburnus	JQ436541.1
Alburnus alburnus	KF731737.1
Alburnus alburnus	Y10443.1
Alosa alosa	EU224045.1
Alosa alosa	EU224046.1
Alosa alosa	HM488341.1
Alosa alosa	HM488342.1
Alosa alosa	HM488343.1
Alosa alosa	HQ659248.1
Alosa alosa	HQ659250.1
Alosa alosa	HQ659251.1
Alosa alosa	HQ659324.1
Alosa alosa	JF681125.1
Alosa fallax	EU223995.1
Alosa fallax	EU492310.1
Alosa fallax	EU552574.1
Alosa fallax	EU552575.1
Alosa fallax	EU552576.1
Alosa fallax	HQ659346.1
Alosa fallax	HQ659354.1
Alosa fallax	HQ659368.1
Alosa fallax	HQ659382.1
Alosa fallax	HQ659394.1
Alosa fallax	JF681127.1
Alosa fallax	JF681128.1
Alosa fallax	JF681129.1

Page	86	of	157
------	----	----	-----

Alosa fallax	JF681131.1
Alosa fallax	JN609123.1
Ambloplites rupestris	AY115977.1
Ambloplites rupestris	AY115978.1
Ambloplites rupestris	AY225663.1
Ambloplites rupestris	DQ451325.1
Ambloplites rupestris	EU501059.1
Ambloplites rupestris	EU501060.1
Ambloplites rupestris	EU501062.1
Ambloplites rupestris	EU501064.1
Ambloplites rupestris	EU501065.1
Ambloplites rupestris	EU501069.1
Ambloplites rupestris	EU501071.1
Ambloplites rupestris	EU501073.1
Ambloplites rupestris	EU501074.1
Ambloplites rupestris	EU501075.1
Ambloplites rupestris	EU501077.1
Ambloplites rupestris	EU501079.1
Ambloplites rupestris	EU501080.1
Ameiurus melas	AY184263.1
Ameiurus melas	AY184273.1
Ameiurus nebulosus	AY184257.1
Ameiurus nebulosus	AY184264.1
Ameiurus nebulosus	AY184271.1
Ameiurus nebulosus	DQ275634.1
Anguilla anguilla	AB021776.1
Anguilla anguilla	AF006714.1
Anguilla anguilla	AF006715.1
Anguilla anguilla	AF368238.1
Anguilla anguilla	AF368239.1
Anguilla anguilla	AF368241.1
Anguilla anguilla	AF368242.1
Anguilla anguilla	AF368244.1
Anguilla anguilla	AF368248.1
Anguilla anguilla	AF368249.1
Anguilla anguilla	AF368251.1
Anguilla anguilla	AF368252.1
Anguilla anguilla	AF368253.1
Anguilla anguilla	AF368254.1
Anguilla anguilla	AP007233.1
Anguilla anguilla	EF427617.1
Anguilla anguilla	EF427618.1
Anguilla anguilla	EU223996.1
Anguilla anguilla	EU223997.1
Anguilla anguilla	EU315235.1
Anguilla anguilla	EU315236.1
Anguilla anguilla	EU315237.1

Anguilla anguilla	EU492326.1
Anguilla anguilla	EU492327.1
Anguilla anguilla	FN263189.1
Anguilla anguilla	JQ312083.1
Anguilla anguilla	JQ312084.1
Anguilla anguilla	JQ312085.1
Anguilla anguilla	KJ564218.1
Anguilla anguilla	KJ564219.1
Anguilla anguilla	KJ564220.1
Anguilla anguilla	KJ564222.1
Anguilla anguilla	KJ564223.1
Anguilla anguilla	KJ564225.1
Anguilla anguilla	KJ564228.1
Anguilla anguilla	KJ564229.1
Anguilla anguilla	KJ564230.1
Anguilla anguilla	KJ564231.1
Anguilla anguilla	KJ564232.1
Anguilla anguilla	KJ564234.1
Anguilla anguilla	KJ564235.1
Anguilla anguilla	KJ564237.1
Anguilla anguilla	KJ564238.1
Anguilla anguilla	KJ564239.1
Anguilla anguilla	KJ564243.1
Anguilla anguilla	KJ564244.1
Anguilla anguilla	KJ564245.1
Anguilla anguilla	KJ564247.1
Anguilla anguilla	KJ564250.1
Anguilla anguilla	KJ564251.1
Anguilla anguilla	KJ564252.1
Anguilla anguilla	KJ564253.1
Anguilla anguilla	KJ564254.1
Anguilla anguilla	KJ564255.1
Anguilla anguilla	KJ564256.1
Anguilla anguilla	KJ564257.1
Anguilla anguilla	KJ564258.1
Anguilla anguilla	KJ564260.1
Anguilla anguilla	KJ564261.1
Anguilla anguilla	KJ564262.1
Anguilla anguilla	KJ564264.1
Anguilla anguilla	KJ564266.1
Anguilla anguilla	KJ564267.1
Anguilla anguilla	KJ564268.1
Anguilla anguilla	KJ564270.1
Aspius aspius	AY026398.1
Aspius aspius	HM560075.1
Barbatula barbatula	AB100917.1
Barbatula barbatula	AF263098.1

Barbatula barbatula	AY281267.1
Barbatula barbatula	DQ025767.1
Barbatula barbatula	DQ025769.1
Barbatula barbatula	DQ025770.1
Barbatula barbatula	DQ025771.1
Barbatula barbatula	DQ025772.1
Barbatula barbatula	DQ025773.1
Barbatula barbatula	DQ025774.1
Barbatula barbatula	DQ025775.1
Barbatula barbatula	DQ025776.1
Barbatula barbatula	DQ025777.1
Barbatula barbatula	DQ025778.1
Barbatula barbatula	DQ025779.1
Barbatula barbatula	DQ025780.1
Barbatula barbatula	DQ025781.1
Barbatula barbatula	DQ025782.1
Barbatula barbatula	DQ025783.1
Barbatula barbatula	DQ025784.1
Barbatula barbatula	DQ025785.1
Barbatula barbatula	DQ025786.1
Barbatula barbatula	DQ025787.1
Barbatula barbatula	DQ025788.1
Barbatula barbatula	DQ025789.1
Barbatula barbatula	DQ025790.1
Barbatula barbatula	DQ025791.1
Barbatula barbatula	DQ025792.1
Barbatula barbatula	DQ025793.1
Barbatula barbatula	DQ025794.1
Barbatula barbatula	DQ025795.1
Barbatula barbatula	DQ025796.1
Barbatula barbatula	DQ025797.1
Barbatula barbatula	DQ025798.1
Barbatula barbatula	DQ025804.1
Barbatula barbatula	DQ025807.1
Barbatula barbatula	DQ025808.1
Barbatula barbatula	DQ025810.1
Barbatula barbatula	DQ025811.1
Barbatula barbatula	DQ025812.1
Barbatula barbatula	DQ025813.1
Barbatula barbatula	DQ025814.1
Barbatula barbatula	DQ025815.1
Barbatula barbatula	DQ025816.1
Barbatula barbatula	DQ025817.1
Barbatula barbatula	DQ025818.1
Barbatula barbatula	DQ025819.1
Barbatula barbatula	DQ025820.1
Barbatula barbatula	DQ025821.1

Barbatula barbatula	DQ025822.1
Barbatula barbatula	DQ025823.1
Barbatula barbatula	DQ025824.1
Barbatula barbatula	DQ025825.1
Barbatula barbatula	DQ025826.1
Barbatula barbatula	DQ025827.1
Barbatula barbatula	DQ025828.1
Barbatula barbatula	DQ025829.1
Barbatula barbatula	DQ025830.1
Barbatula barbatula	DQ025831.1
Barbatula barbatula	DQ025832.1
Barbatula barbatula	DQ025833.1
Barbatula barbatula	DQ025835.1
Barbatula barbatula	DQ025836.1
Barbatula barbatula	DQ025837.1
Barbatula barbatula	DQ025838.1
Barbatula barbatula	DQ025839.1
Barbatula barbatula	DQ025840.1
Barbatula barbatula	DQ025841.1
Barbatula barbatula	DQ025842.1
Barbatula barbatula	DQ025843.1
Barbatula barbatula	DQ025845.1
Barbatula barbatula	DQ025846.1
Barbatula barbatula	DQ025847.1
Barbatula barbatula	DQ025849.1
Barbatula barbatula	DQ025850.1
Barbatula barbatula	DQ025851.1
Barbatula barbatula	DQ025852.1
Barbatula barbatula	DQ025853.1
Barbatula barbatula	DQ025854.1
Barbatula barbatula	DQ025855.1
Barbatula barbatula	DQ025856.1
Barbatula barbatula	DQ025859.1
Barbatula barbatula	DQ025862.1
Barbatula barbatula	DQ025864.1
Barbatula barbatula	DQ025865.1
Barbatula barbatula	DQ025867.1
Barbatula barbatula	DQ025868.1
Barbatula barbatula	DQ025869.1
Barbatula barbatula	DQ025870.1
Barbatula barbatula	DQ025871.1
Barbatula barbatula	DQ025874.1
Barbatula barbatula	DQ025875.1
Barbatula barbatula	DQ025876.1
Barbatula barbatula	DQ025877.1
Barbatula barbatula	DQ025878.1
Barbatula barbatula	DQ025879.1

DQ025880.1
DQ025881.1
DQ025882.1
DQ025885.1
DQ025886.1
DQ025887.1
DQ025888.1
DQ025889.1
DQ025890.1
DQ025891.1
DQ025892.1
DQ025893.1
DQ025894.1
DQ025895.1
DQ025896.1
DQ025899.1
DQ025900.1
DQ025901.1
DQ025902.1
DQ025903.1
DQ025904.1
DQ025905.1
DQ025906.1
DQ025907.1
DQ025908.1
DQ025909.1
DQ025911.1
DQ025912.1
DQ025913.1
DQ025914.1
DQ025915.1
DQ025916.1
DQ025917.1
DQ025918.1
DQ025919.1
DQ025921.1
DQ025922.1
DQ025923.1
DQ025930.1
DQ025931.1
DQ025932.1
DQ025933.1
DQ025934.1
DQ025935.1
DQ025936.1
DQ025937.1
DQ025938.1

Barbatula	barbatula	DQ025939.1
Barbatula	barbatula	DQ025940.1
Barbatula	barbatula	DQ025941.1
Barbatula	barbatula	DQ105254.1
Barbatula	barbatula	EF562634.1
Barbatula	barbatula	EF562635.1
Barbatula	barbatula	EF562636.1
Barbatula	barbatula	EF562637.1
Barbatula	barbatula	EF562638.1
Barbatula	barbatula	EF562639.1
Barbatula	barbatula	EF562640.1
Barbatula	barbatula	EF562641.1
Barbatula	barbatula	EF562642.1
Barbatula	barbatula	EF562643.1
Barbatula	barbatula	EF562644.1
Barbatula	barbatula	EF562645.1
Barbatula	barbatula	EF562646.1
Barbatula	barbatula	EF562647.1
Barbatula	barbatula	EF562648.1
Barbatula	barbatula	EF562649.1
Barbatula	barbatula	EF562650.1
Barbatula	barbatula	EF562651.1
Barbatula	barbatula	EF562652.1
Barbatula	barbatula	EF562653.1
Barbatula	barbatula	EF562654.1
Barbatula	barbatula	EF562655.1
Barbatula	barbatula	EF562656.1
Barbatula	barbatula	EF562657.1
Barbatula	barbatula	EF562658.1
Barbatula	barbatula	EF562659.1
Barbatula	barbatula	EF562660.1
Barbatula	barbatula	EF562661.1
Barbatula	barbatula	EF562662.1
Barbatula	barbatula	EF562663.1
Barbatula	barbatula	EF562664.1
Barbatula	barbatula	EF562665.1
Barbatula	barbatula	EF562666.1
Barbatula	barbatula	EF562667.1
Barbatula	barbatula	EF562668.1
Barbatula	barbatula	EF562669.1
Barbatula	barbatula	EF562670.1
Barbatula	barbatula	EF562671.1
Barbatula	barbatula	EF562672.1
Barbatula	barbatula	EF562674.1
Barbatula	barbatula	EF562675.1
Barbatula	barbatula	EF562676.1
Barbatula	barbatula	EF562677.1

Barbatula barbatula	EF562678.1
Barbatula barbatula	EF562679.1
Barbatula barbatula	EF562680.1
Barbatula barbatula	EF562681.1
Barbatula barbatula	EF562682.1
Barbatula barbatula	EF562683.1
Barbatula barbatula	EF562684.1
Barbatula barbatula	EF562685.1
Barbatula barbatula	EF562686.1
Barbatula barbatula	EF562687.1
Barbatula barbatula	EF562688.1
Barbatula barbatula	EF562689.1
Barbatula barbatula	EF562690.1
Barbatula barbatula	EF562691.1
Barbatula barbatula	EF562692.1
Barbatula barbatula	EF562693.1
Barbatula barbatula	EF562694.1
Barbatula barbatula	EF562695.1
Barbatula barbatula	EF562696.1
Barbatula barbatula	EF562697.1
Barbatula barbatula	EF562698.1
Barbatula barbatula	EF562699.1
Barbatula barbatula	EF562700.1
Barbatula barbatula	EF562701.1
Barbatula barbatula	EF562702.1
Barbatula barbatula	EF562703.1
Barbatula barbatula	EF562704.1
Barbatula barbatula	EF562705.1
Barbatula barbatula	EF562706.1
Barbatula barbatula	EF562707.1
Barbatula barbatula	EF562708.1
Barbatula barbatula	EF562709.1
Barbatula barbatula	EF562710.1
Barbatula barbatula	EF562711.1
Barbatula barbatula	EF562712.1
Barbatula barbatula	EF562713.1
Barbatula barbatula	EF562714.1
Barbatula barbatula	EF562715.1
Barbatula barbatula	EF562716.1
Barbatula barbatula	EF562717.1
Barbatula barbatula	EF562718.1
Barbatula barbatula	EF562719.1
Barbatula barbatula	EF562720.1
Barbatula barbatula	EF562721.1
Barbatula barbatula	EF562722.1
Barbatula barbatula	EF562723.1
Barbatula barbatula	EF562725.1

Barbatula barbatula	EF562726.1
Barbatula barbatula	EF562728.1
Barbatula barbatula	EF562729.1
Barbatula barbatula	EF562730.1
Barbatula barbatula	EF562732.1
Barbatula barbatula	EF562733.1
Barbatula barbatula	EF562734.1
Barbatula barbatula	EF562735.1
Barbatula barbatula	EF562736.1
Barbatula barbatula	EF562738.1
Barbatula barbatula	EF562739.1
Barbatula barbatula	EF562740.1
Barbatula barbatula	EF562741.1
Barbatula barbatula	EF562742.1
Barbatula barbatula	EF562743.1
Barbatula barbatula	EF562744.1
Barbatula barbatula	EF562745.1
Barbatula barbatula	EF562746.1
Barbatula barbatula	EF562747.1
Barbatula barbatula	EF562748.1
Barbatula barbatula	EF562749.1
Barbatula barbatula	EF562750.1
Barbatula barbatula	EF562751.1
Barbatula barbatula	EF562752.1
Barbatula barbatula	EF562753.1
Barbatula barbatula	EF562754.1
Barbatula barbatula	EF562755.1
Barbatula barbatula	EF562756.1
Barbatula barbatula	EF562757.1
Barbatula barbatula	EF562758.1
Barbatula barbatula	EF562759.1
Barbatula barbatula	EF562760.1
Barbatula barbatula	EF562761.1
Barbatula barbatula	EF562762.1
Barbatula barbatula	EF562763.1
Barbatula barbatula	GU583652.1
Barbatula barbatula	GU583653.1
Barbus barbus	AB238965.1
Barbus barbus	AF112123.1
Barbus barbus	AF112408.1
Barbus barbus	AF397298.1
Barbus barbus	AY013484.1
Barbus barbus	AY013485.1
Barbus barbus	AY013486.1
Barbus barbus	AY013487.1
Barbus barbus	AY013488.1
Barbus barbus	AY331018.1

Page	94	of	157
------	----	----	-----

Barbus barbus	AY331019.1
Barbus barbus	AY331020.1
Barbus barbus	AY331021.1
Barbus barbus	AY331022.1
Barbus barbus	AY331023.1
Barbus barbus	AY331024.1
Barbus barbus	JN983681.1
Barbus barbus	JN983682.1
Barbus barbus	JN983683.1
Barbus barbus	JN983684.1
Barbus barbus	JN983685.1
Barbus barbus	JN983686.1
Barbus barbus	JN983687.1
Barbus barbus	JN983688.1
Barbus barbus	JN983689.1
Barbus barbus	JN983690.1
Barbus barbus	JN983691.1
Barbus barbus	JN983692.1
Barbus barbus	KC465918.1
Barbus barbus	KC465919.1
Barbus barbus	KC465920.1
Barbus barbus	KC465921.1
Barbus barbus	KC465922.1
Barbus barbus	KC465923.1
Barbus barbus	KC465924.1
Barbus barbus	KC465925.1
Barbus barbus	KC465926.1
Barbus barbus	KC465927.1
Barbus barbus	KF923538.1
Blicca bjoerkna	AP009304.1
Blicca bioerkna	HM560076.1
Blicca bioerkna	HM560077.1
Carassius auratus	AB006953.1
Carassius auratus	AB111951.1
Carassius auratus	AB368677.1
Carassius auratus	AB368678.1
Carassius auratus	AB368679.1
Carassius auratus	AB368680.1
Carassius auratus	AB368681.1
Carassius auratus	AB368682.1
Carassius auratus	AB368683.1
Carassius auratus	AB368684.1
Carassius auratus	AB368685.1
Carassius auratus	AB368686.1
Carassius auratus	AB368688.1
Carassius auratus	AB368689.1
Carassius auratus	AB368690.1

Carassius auratus	AB368691.1
Carassius auratus	AB368692.1
Carassius auratus	AB368693.1
Carassius auratus	AB368694.1
Carassius auratus	AB368695.1
Carassius auratus	AB368696.1
Carassius auratus	AB368697.1
Carassius auratus	AB368698.1
Carassius auratus	AB368699.1
Carassius auratus	AB368700.1
Carassius auratus	AB368701.1
Carassius auratus	AB368702.1
Carassius auratus	AB368703.1
Carassius auratus	AB368704.1
Carassius auratus	AB368705.1
Carassius auratus	AB368706.1
Carassius auratus	AB368707.1
Carassius auratus	AB368708.1
Carassius auratus	AB368709.1
Carassius auratus	AB368710.1
Carassius auratus	AB852584.1
Carassius auratus	AB852585.1
Carassius auratus	AB852586.1
Carassius auratus	AB852588.1
Carassius auratus	AB852590.1
Carassius auratus	AB852591.1
Carassius auratus	AB852593.1
Carassius auratus	AB852594.1
Carassius auratus	AB852595.1
Carassius auratus	AB852596.1
Carassius auratus	AB852597.1
Carassius auratus	AB852598.1
Carassius auratus	AB852600.1
Carassius auratus	AB852602.1
Carassius auratus	AF045966.1
Carassius auratus	AF051858.1
Carassius auratus	AJ555550.1
Carassius auratus	DQ399923.1
Carassius auratus	DQ399930.1
Carassius auratus	DQ868908.1
Carassius auratus	DQ868914.1
Carassius auratus	EF055472.1
Carassius auratus	EF483931.1
Carassius auratus	EU528842.1
Carassius auratus	EU528843.1
Carassius auratus	EU528844.1
Carassius auratus	EU528846.1

Carassius auratus	EU528847.1
Carassius auratus	EU663574.1
Carassius auratus	EU663575.1
Carassius auratus	EU663584.1
Carassius auratus	EU663588.1
Carassius auratus	FJ169953.1
Carassius auratus	FJ169954.1
Carassius auratus	GU086395.1
Carassius auratus	GU086396.1
Carassius auratus	GU086397.1
Carassius auratus	GU135503.1
Carassius auratus	GU135504.1
Carassius auratus	GU135505.1
Carassius auratus	GU135508.1
Carassius auratus	GU135510.1
Carassius auratus	GU135511.1
Carassius auratus	GU135512.1
Carassius auratus	GU135513.1
Carassius auratus	GU135514.1
Carassius auratus	GU135515.1
Carassius auratus	GU135522.1
Carassius auratus	GU135524.1
Carassius auratus	GU135526.1
Carassius auratus	GU135530.1
Carassius auratus	GU135539.1
Carassius auratus	GU135541.1
Carassius auratus	GU135542.1
Carassius auratus	GU135544.1
Carassius auratus	GU135545.1
Carassius auratus	GU135547.1
Carassius auratus	GU135548.1
Carassius auratus	GU135551.1
Carassius auratus	GU135553.1
Carassius auratus	GU135555.1
Carassius auratus	GU135556.1
Carassius auratus	GU135557.1
Carassius auratus	GU135558.1
Carassius auratus	GU135559.1
Carassius auratus	GU135564.1
Carassius auratus	GU135567.1
Carassius auratus	GU135568.1
Carassius auratus	GU135583.1
Carassius auratus	GU135589.1
Carassius auratus	GU135594.1
Carassius auratus	GU135599.1
Carassius auratus	GU135600.1
Carassius auratus	GU135601.1

Carassius auratus	GU135604.1
Carassius auratus	GU135605.1
Carassius auratus	GU942707.1
Carassius auratus	GU942709.1
Carassius auratus	GU991382.1
Carassius auratus	GU991384.1
Carassius auratus	GU991385.1
Carassius auratus	GU991386.1
Carassius auratus	GU991387.1
Carassius auratus	GU991394.1
Carassius auratus	GU991395.1
Carassius auratus	HM000036.1
Carassius auratus	HQ443698.1
Carassius auratus	HQ689858.1
Carassius auratus	HQ689860.1
Carassius auratus	HQ689861.1
Carassius auratus	HQ689862.1
Carassius auratus	HQ689863.1
Carassius auratus	HQ689865.1
Carassius auratus	HQ689866.1
Carassius auratus	HQ689867.1
Carassius auratus	HQ689868.1
Carassius auratus	HQ689869.1
Carassius auratus	HQ689871.1
Carassius auratus	HQ689872.1
Carassius auratus	HQ689873.1
Carassius auratus	HQ689875.1
Carassius auratus	HQ689877.1
Carassius auratus	HQ689878.1
Carassius auratus	HQ689879.1
Carassius auratus	HQ689880.1
Carassius auratus	HQ689882.1
Carassius auratus	HQ689883.1
Carassius auratus	HQ689884.1
Carassius auratus	HQ689886.1
Carassius auratus	HQ689887.1
Carassius auratus	HQ689888.1
Carassius auratus	HQ875340.1
Carassius auratus	JF694778.1
Carassius auratus	JN412508.1
Carassius auratus	JN412509.1
Carassius auratus	JN412511.1
Carassius auratus	JN412514.1
Carassius auratus	JN412519.1
Carassius auratus	JN412521.1
Carassius auratus	JN412528.1
Carassius auratus	JN412532.1

Carassius auratus	JX183534.1
Carassius auratus	JX183535.1
Carassius auratus	JX183536.1
Carassius auratus	KF147851.1
Carassius auratus	KM261774.1
Carassius carassius	DQ399938.1
Carassius carassius	FJ167428.1
Carassius carassius	FJ478013.1
Carassius carassius	GU135602.1
Carassius carassius	GU991400.1
Carassius carassius	JN412533.1
Carassius carassius	JN412535.1
Carassius carassius	JN412536.1
Carassius carassius	JN412537.1
Carassius carassius	JN412539.1
Carassius carassius	JN412540.1
Carassius carassius	JN412548.1
Carassius carassius	JN412549.1
Carassius carassius	JQ911695.1
Carassius carassius	KC238569.1
Chondrostoma nasus	AF533760.1
Chondrostoma nasus	AF533761.1
Chondrostoma nasus	AY026402.1
Chondrostoma nasus	DQ447729.1
Chondrostoma nasus	EF363338.1
Chondrostoma nasus	EF363339.1
Chondrostoma nasus	EF363340.1
Chondrostoma nasus	EF363341.1
Chondrostoma nasus	EF363342.1
Chondrostoma nasus	EF363343.1
Chondrostoma nasus	EF363344.1
Chondrostoma nasus	EF363345.1
Chondrostoma nasus	EF363346.1
Chondrostoma nasus	EF363347.1
Chondrostoma nasus	EF363348.1
Chondrostoma nasus	EF363349.1
Chondrostoma nasus	EF363351.1
Chondrostoma nasus	EF363352.1
Chondrostoma nasus	EF363353.1
Chondrostoma nasus	EF363354.1
Chondrostoma nasus	EF363355.1
Chondrostoma nasus	EF363356.1
Chondrostoma nasus	EF363358.1
Chondrostoma nasus	EF363359.1
Chondrostoma nasus	EF363360.1
Chondrostoma nasus	EF363361.1
Chondrostoma nasus	EF363362.1

Chondrostoma nasus	EF363363.1
Chondrostoma nasus	EF363364.1
Chondrostoma nasus	EF363365.1
Chondrostoma nasus	EF363366.1
Chondrostoma nasus	EF363367.1
Chondrostoma nasus	EF363368.1
Chondrostoma nasus	JQ652366.1
Chondrostoma nasus	KF529136.1
Chondrostoma nasus	KF529137.1
Chondrostoma nasus	Z75109.1
Cobitis taenia	AF263077.1
Cobitis taenia	AF263078.1
Cobitis taenia	AY191565.1
Cobitis taenia	AY735186.1
Cobitis taenia	AY735187.1
Cobitis taenia	AY735188.1
Cobitis taenia	AY735189.1
Cobitis taenia	AY735190.1
Cobitis taenia	AY735191.1
Cobitis taenia	AY735192.1
Cobitis taenia	AY735193.1
Cobitis taenia	AY735194.1
Cobitis taenia	AY735195.1
Cobitis taenia	AY735196.1
Cobitis taenia	AY735197.1
Cobitis taenia	AY735198.1
Cobitis taenia	AY735199.1
Cobitis taenia	AY735200.1
Cobitis taenia	AY735201.1
Cobitis taenia	AY735202.1
Cobitis taenia	AY735203.1
Cobitis taenia	AY735204.1
Cobitis taenia	AY735205.1
Cobitis taenia	AY735206.1
Cobitis taenia	AY735207.1
Cohitis taenia	ΔV735207.1
Cohitis taenia	AV735200.1
Cobitis taenia	AV725210.1
Cobitis taenia	AV725210.1
Cobitis taenia	AV725212.1
Cobitis taonia	AT735212.1
Cobitis taenia	AT755215.1
Cobilis laenia	AY735214.1
Cobitis taonia	AT/35215.1
Cobitis taerila	AT/35210.1
Cobitis teeria	AT/3521/.1
Coditis taenia	AY/35218.1
Coditis taenia	AY/35219.1

Page	100	of	157
------	-----	----	-----

Cobitis taenia	AY735220.1
Cobitis taenia	AY735221.1
Cobitis taenia	AY735222.1
Cobitis taenia	AY735223.1
Cobitis taenia	AY735224.1
Cobitis taenia	AY735225.1
Cobitis taenia	AY735226.1
Cobitis taenia	AY735227.1
Cobitis taenia	AY735228.1
Cobitis taenia	AY735229.1
Cobitis taenia	AY735230.1
Cobitis taenia	AY735231.1
Cobitis taenia	AY735232.1
Cobitis taenia	AY735233.1
Cobitis taenia	GQ231969.1
Cobitis taenia	JX402894.1
Cobitis taenia	JX402895.1
Cobitis taenia	JX402896.1
Cobitis taenia	JX402897.1
Cobitis taenia	JX402898.1
Cobitis taenia	JX402899.1
Coregonus albula	DQ173427.1
Coregonus albula	JX960769.1
Coregonus autumnalis	AJ251592.1
Coregonus autumnalis	AJ617503.1
Coregonus autumnalis	JX960773.1
Coregonus autumnalis	JX960774.1
Coregonus lavaretus	AB034824.1
Coregonus lavaretus	AJ617497.1
Coregonus lavaretus	AJ617498.1
Coregonus lavaretus	AJ617499.1
Coregonus lavaretus	AJ617501.1
Coregonus lavaretus	DQ173307.1
Coregonus lavaretus	DQ173309.1
Coregonus lavaretus	DQ173311.1
Coregonus lavaretus	DQ173327.1
Coregonus lavaretus	DQ173329.1
Coregonus lavaretus	DQ173331.1
Coregonus lavaretus	DQ173333.1
Coregonus lavaretus	DQ173343.1
Coregonus lavaretus	DQ173349.1
Coregonus lavaretus	DQ173351.1
Coregonus lavaretus	DQ173353.1
Coregonus lavaretus	DQ173371.1
Coregonus lavaretus	DQ173375.1
Coregonus lavaretus	DQ173377.1
Coregonus lavaretus	DQ173379.1

Coregonus lavaretus	DQ173397.1
Coregonus lavaretus	DQ173403.1
Coregonus lavaretus	DQ173411.1
Coregonus lavaretus	DQ173413.1
Coregonus lavaretus	DQ185412.1
Coregonus lavaretus	HQ189759.1
Coregonus lavaretus	HQ189760.1
Coregonus lavaretus	HQ189761.1
Coregonus lavaretus	HQ189762.1
Coregonus lavaretus	HQ189763.1
Coregonus lavaretus	HQ189764.1
Coregonus lavaretus	HQ189765.1
Coregonus lavaretus	HQ189766.1
Coregonus lavaretus	JQ661382.1
Coregonus lavaretus	JQ661383.1
Coregonus lavaretus	JQ661390.1
Coregonus lavaretus	JQ661391.1
Coregonus lavaretus	JQ661392.1
Coregonus lavaretus	JQ661395.1
Coregonus lavaretus	JQ661419.1
Coregonus lavaretus	JQ661429.1
Coregonus lavaretus	JQ661433.1
Coregonus lavaretus	JQ661445.1
Coregonus lavaretus	JQ661449.1
Coregonus lavaretus	JQ661453.1
Coregonus lavaretus	JQ661457.1
Coregonus lavaretus	JQ661470.1
Coregonus lavaretus	JX477682.1
Coregonus lavaretus	JX960783.1
Coregonus lavaretus	KC987017.1
Coregonus oxyrinchus	DQ185405.1
Coregonus oxyrinchus	JQ661398.1
Coregonus oxyrinchus	JQ661400.1
Coregonus oxyrinchus	JQ661401.1
Cottus gobio	AY116366.1
Ctenopharyngodon idell	AB900162.1
Ctenopharyngodon idell	AF051860.1
Ctenopharyngodon idell	AF420424.1
Ctenopharyngodon idel	HM237990.1
Ctenopharyngodon idel	HM237999.1
Ctenopharyngodon idel	HM238015.1
Ctenopharyngodon idel	JN673556.1
Cyprinus carpio	AB158803.1
Cyprinus carpio	AB158804.1
Cyprinus carpio	AB158805.1
Cyprinus carpio	AB158806.1
Cyprinus carpio	AB158807.1

Cyprinus carpio	AY347277.1
Cyprinus carpio	AY347278.1
Cyprinus carpio	AY347279.1
Cyprinus carpio	AY347280.1
Cyprinus carpio	AY347281.1
Cyprinus carpio	AY347288.1
Cyprinus carpio	AY347289.1
Cyprinus carpio	AY347290.1
Cyprinus carpio	AY347291.1
Cyprinus carpio	AY347292.1
Cyprinus carpio	AY347293.1
Cyprinus carpio	AY347294.1
Cyprinus carpio	DQ532100.1
Cyprinus carpio	DQ532101.1
Cyprinus carpio	DQ532107.1
Cyprinus carpio	DQ532108.1
Cyprinus carpio	DQ532109.1
Cyprinus carpio	DQ532111.1
Cyprinus carpio	DQ868871.1
Cyprinus carpio	EU689066.1
Cyprinus carpio	FJ478020.1
Cyprinus carpio	FJ478021.2
Cyprinus carpio	HM008692.1
Cyprinus carpio	HM008693.1
Cyprinus carpio	HQ443697.1
Cyprinus carpio	JN105352.1
Cyprinus carpio	JN105353.1
Cyprinus carpio	JN105357.1
Cyprinus carpio	JX963628.1
Cyprinus carpio	JX963629.1
Cyprinus carpio	JX963630.1
Cyprinus carpio	JX963631.1
Cyprinus carpio	KF013225.1
Cyprinus carpio	KF574485.1
Cyprinus carpio	KF856964.1
Cyprinus carpio	KF856965.1
Cyprinus carpio	NC_001606.1
Esox lucius	AP004103.1
Esox lucius	AY497445.1
Esox lucius	AY497446.1
Esox lucius	AY497447.1
Esox lucius	AY497451.1
Esox lucius	AY497452.1
Esox lucius	AY497453.1
Esox lucius	BT079192.1
Esox lucius	BT079488.1
Esox lucius	DQ447326.1

Page 103 of 157

Esox lucius	DQ447327.1
Esox lucius	DQ447334.1
Esox lucius	FJ425092.1
Esox lucius	FJ425093.1
Esox lucius	FJ425094.1
Esox lucius	FJ425095.1
Esox lucius	FJ425096.1
Esox lucius	FJ425097.1
Esox lucius	HM177470.1
Esox lucius	HM592073.1
Esox lucius	HM592087.1
Esox lucius	HM592093.1
Esox lucius	HM592101.1
Esox lucius	HM592128.1
Esox lucius	HM592130.1
Esox lucius	HM592134.1
Esox lucius	HM592136.1
Esox lucius	HM592185.1
Esox lucius	HM592187.1
Esox lucius	HM592193.1
Esox lucius	HM592230.1
Esox lucius	HM592254.1
Esox lucius	JN190458.1
Esox lucius	JN190459.1
Esox lucius	JN190461.1
Esox lucius	JN190462.1
Esox lucius	JN190466.1
Esox lucius	JN190467.1
Esox lucius	JN190468.1
Esox lucius	JN190469.1
Esox lucius	JN190470.1
Esox lucius	JN190473.1
Esox lucius	JN190474.1
Esox lucius	JN190475.1
Esox lucius	JN190478.1
Esox lucius	JN190479.1
Esox lucius	JN190480.1
Esox lucius	JN190483.1
Esox lucius	KM281456.1
Esox lucius	KM281457.1
Esox lucius	KM281458.1
Esox lucius	KM281459.1
Esox lucius	KM281460.1
Esox lucius	KM281461.1
Esox lucius	KM281462.1
Esox lucius	KM281463.1
Esox lucius	KM281464.1

Esox lucius	KM281465.1
Esox lucius	KM281466.1
Esox lucius	KM281467.1
Esox lucius	KM281468.1
Esox lucius	KM281469.1
Esox lucius	KM281470.1
Esox lucius	KM281472.1
Esox lucius	KM281473.1
Esox lucius	KM281474.1
Esox lucius	KM281475.1
Esox lucius	KM281476.1
Esox lucius	KM281478.1
Gasterosteus aculeatus	AB094606.1
Gasterosteus aculeatus	AB094607.1
Gasterosteus aculeatus	AB094608.1
Gasterosteus aculeatus	AB094609.1
Gasterosteus aculeatus	AB094610.1
Gasterosteus aculeatus	AB094611.1
Gasterosteus aculeatus	AB094612.1
Gasterosteus aculeatus	AB094613.1
Gasterosteus aculeatus	AB094614.1
Gasterosteus aculeatus	AB094615.1
Gasterosteus aculeatus	AB094616.1
Gasterosteus aculeatus	AB094617.1
Gasterosteus aculeatus	AB094618.1
Gasterosteus aculeatus	AB094619.1
Gasterosteus aculeatus	AB094620.1
Gasterosteus aculeatus	AB094621.1
Gasterosteus aculeatus	AB094622.1
Gasterosteus aculeatus	AB094623.1
Gasterosteus aculeatus	AB094624.1
Gasterosteus aculeatus	AB094625.1
Gasterosteus aculeatus	AB094626.1
Gasterosteus aculeatus	AB094627.1
Gasterosteus aculeatus	AB678412.1
Gasterosteus aculeatus	AB678413.1
Gasterosteus aculeatus	AB678414.1
Gasterosteus aculeatus	AB678415.1
Gasterosteus aculeatus	AB678416.1
Gasterosteus aculeatus	AB678417.1
Gasterosteus aculeatus	AB678418.1
Gasterosteus aculeatus	AF356079.1
Gasterosteus aculeatus	AP002944.1
Gasterosteus aculeatus	AY116004.1
Gasterosteus aculeatus	AY787224.1
Gasterosteus aculeatus	EF525391.1
Gasterosteus aculeatus	EF525395.1

Gasterosteus aculeatus EF525396.1 Gasterosteus aculeatus EF525398.1 Gasterosteus aculeatus EF525400.1 Gasterosteus aculeatus EF525401.1 Gasterosteus aculeatus EF525405.1 Gasterosteus aculeatus EF525406.1 Gasterosteus aculeatus EF525407.1 Gasterosteus aculeatus EF525408.1 Gasterosteus aculeatus EF525409.1 Gasterosteus aculeatus EF525410.1 Gasterosteus aculeatus EF525411.1 Gasterosteus aculeatus EF525412.1 Gasterosteus aculeatus EF525413.1 Gasterosteus aculeatus EF525414.1 Gasterosteus aculeatus EF525415.1 Gasterosteus aculeatus EF525420.1 Gasterosteus aculeatus EF525421.1 Gasterosteus aculeatus EF525423.1 Gasterosteus aculeatus EF525424.1 Gasterosteus aculeatus EF525425.1 Gasterosteus aculeatus EF525426.1 Gasterosteus aculeatus EF525428.1 Gasterosteus aculeatus EF525431.1 Gasterosteus aculeatus EF525432.1 Gasterosteus aculeatus EF525433.1 Gasterosteus aculeatus EF525434.1 Gasterosteus aculeatus EF525435.1 Gasterosteus aculeatus EF525436.1 Gasterosteus aculeatus EF525437.1 Gasterosteus aculeatus EF525438.1 Gasterosteus aculeatus EF525440.1 Gasterosteus aculeatus EF525442.1 Gasterosteus aculeatus EF525443.1 Gasterosteus aculeatus EF525444.1 Gasterosteus aculeatus EF525445.1 Gasterosteus aculeatus EF525446.1 Gasterosteus aculeatus EF525447.1 Gasterosteus aculeatus EF525450.1 Gasterosteus aculeatus EF525452.1 Gasterosteus aculeatus EF525453.1 Gasterosteus aculeatus EF525457.1 Gasterosteus aculeatus EF525458.1 Gasterosteus aculeatus EF525461.1 Gasterosteus aculeatus EF525463.1 Gasterosteus aculeatus EF525464.1 Gasterosteus aculeatus EF525465.1 Gasterosteus aculeatus EF525466.1 Gasterosteus aculeatus EF525467.1 Gasterosteus aculeatus EF525468.1 Gasterosteus aculeatus EF525469.1 Gasterosteus aculeatus EF525471.1 Gasterosteus aculeatus EF525472.1 Gasterosteus aculeatus EF525475.1 Gasterosteus aculeatus KC478175.1 Gasterosteus aculeatus KC478176.1 Gasterosteus aculeatus KC478177.1 Gasterosteus aculeatus KC478179.1 Gasterosteus aculeatus KC478181.1 Gasterosteus aculeatus KC478183.1 Gasterosteus aculeatus KC478184.1 Gasterosteus aculeatus KC478186.1 Gasterosteus aculeatus KC478188.1 Gasterosteus aculeatus KC478189.1 Gasterosteus aculeatus KC478191.1 Gasterosteus aculeatus KC478193.1 Gasterosteus aculeatus KC478194.1 Gasterosteus aculeatus KC478195.1 Gasterosteus aculeatus KC478196.1 Gasterosteus aculeatus KC478197.1 Gasterosteus aculeatus KC478198.1 Gasterosteus aculeatus KC478201.1 Gasterosteus aculeatus KC478202.1 Gasterosteus aculeatus KC478203.1 Gasterosteus aculeatus KC478207.1 Gasterosteus aculeatus KC478210.1 Gasterosteus aculeatus KC478213.1 Gasterosteus aculeatus KC478214.1 Gasterosteus aculeatus KC478215.1 Gasterosteus aculeatus KC478219.1 Gasterosteus aculeatus KC478222.1 Gasterosteus aculeatus KC478224.1 Gasterosteus aculeatus KC478226.1 Gasterosteus aculeatus KC478228.1 Gasterosteus aculeatus KC478231.1 Gasterosteus aculeatus KC478233.1 Gasterosteus aculeatus KC478234.1 Gasterosteus aculeatus KC478236.1 Gasterosteus aculeatus KC478237.1 Gasterosteus aculeatus KC478239.1 Gasterosteus aculeatus KC478240.1 Gasterosteus aculeatus KC478242.1 Gasterosteus aculeatus KC478243.1 Gasterosteus aculeatus KC478244.1 Gasterosteus aculeatus KC478247.1

Gasterosteus aculeatus	KC478249.1
Gasterosteus aculeatus	KC478252.1
Gasterosteus aculeatus	KC478254.1
Gasterosteus aculeatus	KC478255.1
Gasterosteus aculeatus	KC478257.1
Gasterosteus aculeatus	KC478258.1
Gasterosteus aculeatus	KC478259.1
Gasterosteus aculeatus	KC478260.1
Gasterosteus aculeatus	KC478266.1
Gasterosteus aculeatus	KC478267.1
Gasterosteus aculeatus	KC478268.1
Gasterosteus aculeatus	KC478269.1
Gasterosteus aculeatus	KC478272.1
Gasterosteus aculeatus	KC478274.1
Gasterosteus aculeatus	KC478276.1
Gasterosteus aculeatus	KC478278.1
Gasterosteus aculeatus	KM508783.1
Gasterosteus aculeatus	KM508784.1
Gasterosteus aculeatus	KM508785.1
Gasterosteus aculeatus	KM508792.1
Gasterosteus aculeatus	KM523287.1
Gobio gobio	AB239596.1
Gobio gobio	AF045996.1
Gobio gobio	AY426562.1
Gobio gobio	AY426563.1
Gobio gobio	AY426564.1
Gobio gobio	AY426566.1
Gobio gobio	AY426567.1
Gobio gobio	AY426569.1
Gobio gobio	AY426570.1
Gobio gobio	AY426571.1
Gobio gobio	AY426572.1
Gobio gobio	AY426573.1
Gobio gobio	AY426574.1
Gobio gobio	AY426575.1
Gobio gobio	AY426576.1
Gobio gobio	AY426577.1
Gobio gobio	AY426578.1
Gobio gobio	AY426580.1
Gobio gobio	AY426582.1
Gobio gobio	AY426585.1
Gobio gobio	AY426586.1
Gobio gobio	AY426587.1
Gobio gobio	AY426588.1
Gobio gobio	AY426589.1
Gobio gobio	AY426591.1
Gobio gobio	AY426592.1

Gobio gobio EF173619.1 Gobio gobio HM560092.1 Gobio gobio KF731747.1 Gobio gobio Y10452.1 Gymnocephalus cernua AF045356.1 Gymnocephalus cernua AF386598.1 Gymnocephalus cernua AJ001511.1 Gymnocephalus cernua KC819833.1 Gymnocephalus cernua KM978956.1 Hypophthalmichthys mcAB198974.1 Hypophthalmichthys mcAF051866.1 Hypophthalmichthys mcEU315941.1 Hypophthalmichthys mcJQ231114.1 Hypophthalmichthys mcKJ671449.1 Hypophthalmichthys mcKJ671450.1 Hypophthalmichthys mcKJ746964.1 Hypophthalmichthys mcKJ746965.1 Hypophthalmichthys no EU343733.1 Hypophthalmichthys no HM162839.1 Hypophthalmichthys no JQ346141.1 Hypophthalmichthys no KJ679504.1 Hypophthalmichthys no KJ710362.1 Hypophthalmichthys no KJ729077.1 Hypophthalmichthys no KJ756343.1 Lampetra fluviatilis AJ937924.1 Lampetra fluviatilis AJ937925.1 Lampetra fluviatilis AJ937926.1 Lampetra fluviatilis AJ937929.1 Lampetra fluviatilis AJ937938.1 Lampetra fluviatilis AJ937939.1 Lampetra fluviatilis AJ937940.1 Lampetra fluviatilis AJ937942.1 Lampetra fluviatilis AJ937943.1 Lampetra fluviatilis AJ937944.1 Lampetra fluviatilis AJ937954.1 Lampetra fluviatilis GQ206175.1 Lampetra fluviatilis NC_001131.1 Lampetra planeri AJ937922.1 Lampetra planeri AJ937923.1 Lampetra planeri AJ937930.1 Lampetra planeri AJ937931.1 Lampetra planeri AJ937933.1 Lampetra planeri AJ937946.1 Lampetra planeri AJ937951.1 Lampetra planeri AJ937952.1 Lampetra planeri AJ937953.1 Lampetra planeri FN641828.2
Lampetra planeri	FR669668.2
Lampetra planeri	FR669669.2
Lampetra planeri	FR669670.2
Lampetra planeri	FR669671.2
Lampetra planeri	FR669672.2
Lampetra planeri	X79110.1
Lepomis gibbosus	AY828960.1
Lepomis gibbosus	AY828961.1
Lepomis gibbosus	AY828962.1
Lepomis gibbosus	JF742829.1
Lepomis gibbosus	KF013242.1
Lepomis gibbosus	KM523290.1
Leucaspius delineatus	HM560097.1
Leucaspius delineatus	NC_020357.1
Leucaspius delineatus	Y10447.1
Leuciscus idus	AY026397.1
Leuciscus idus	DQ664448.1
Leuciscus idus	HM560098.1
Leuciscus idus	HM560099.1
Leuciscus idus	KF913024.1
Leuciscus leuciscus	AJ555553.1
Leuciscus leuciscus	AY509823.1
Leuciscus leuciscus	DQ664302.1
Leuciscus leuciscus	DQ664303.1
Leuciscus leuciscus	DQ664304.1
Leuciscus leuciscus	DQ664305.1
Leuciscus leuciscus	DQ664306.1
Leuciscus leuciscus	DQ664307.1
Leuciscus leuciscus	DQ664308.1
Leuciscus leuciscus	DQ664309.1
Leuciscus leuciscus	DQ664310.1
Leuciscus leuciscus	DQ664312.1
Leuciscus leuciscus	DQ664313.1
Leuciscus leuciscus	DQ664314.1
Leuciscus leuciscus	DQ664315.1
Leuciscus leuciscus	DQ664316.1
Leuciscus leuciscus	DQ664317.1
Leuciscus leuciscus	DQ664318.1
Leuciscus leuciscus	DQ664319.1
Leuciscus leuciscus	DQ664320.1
Leuciscus leuciscus	DQ664321.1
Leuciscus leuciscus	DQ664322.1
Leuciscus leuciscus	DQ664323.1
Leuciscus leuciscus	DQ664324.1
Leuciscus leuciscus	DQ664326.1
Leuciscus leuciscus	DQ664327.1
Leuciscus leuciscus	DQ664328.1

Leuciscus leuciscus	DQ664329.1
Leuciscus leuciscus	DQ664330.1
Leuciscus leuciscus	DQ664331.1
Leuciscus leuciscus	DQ664332.1
Leuciscus leuciscus	DQ664333.1
Leuciscus leuciscus	DQ664334.1
Leuciscus leuciscus	DQ664335.1
Leuciscus leuciscus	DQ664336.1
Leuciscus leuciscus	DQ664337.1
Leuciscus leuciscus	DQ664338.1
Leuciscus leuciscus	DQ664339.1
Leuciscus leuciscus	DQ664340.1
Leuciscus leuciscus	DQ664341.1
Leuciscus leuciscus	DQ664342.1
Leuciscus leuciscus	DQ664343.1
Leuciscus leuciscus	DQ664346.1
Leuciscus leuciscus	DQ664347.1
Leuciscus leuciscus	DQ664348.1
Leuciscus leuciscus	DQ664349.1
Leuciscus leuciscus	DQ664350.1
Leuciscus leuciscus	DQ664351.1
Leuciscus leuciscus	DQ664352.1
Leuciscus leuciscus	DQ664353.1
Leuciscus leuciscus	DQ664354.1
Leuciscus leuciscus	DQ664355.1
Leuciscus leuciscus	DQ664356.1
Leuciscus leuciscus	DQ664357.1
Leuciscus leuciscus	DQ664358.1
Leuciscus leuciscus	DQ664359.1
Leuciscus leuciscus	DQ664360.1
Leuciscus leuciscus	DQ664361.1
Leuciscus leuciscus	DQ664362.1
Leuciscus leuciscus	DQ664363.1
Leuciscus leuciscus	DQ664365.1
Leuciscus leuciscus	DQ664366.1
Leuciscus leuciscus	DQ664367.1
Leuciscus leuciscus	DQ664368.1
Leuciscus leuciscus	DQ664369.1
Leuciscus leuciscus	DQ664370.1
Leuciscus leuciscus	DQ664371.1
Leuciscus leuciscus	DQ664372.1
Leuciscus leuciscus	DQ664374.1
Leuciscus leuciscus	DQ664375.1
Leuciscus leuciscus	DQ664376.1
Leuciscus leuciscus	DQ664377.1
Leuciscus leuciscus	DQ664378.1
Leuciscus leuciscus	DQ664379.1

Leuciscus leuciscus	DQ664380.1
Leuciscus leuciscus	DQ664381.1
Leuciscus leuciscus	DQ664382.1
Leuciscus leuciscus	DQ664383.1
Leuciscus leuciscus	DQ664384.1
Leuciscus leuciscus	DQ664385.1
Leuciscus leuciscus	DQ664386.1
Leuciscus leuciscus	DQ664387.1
Leuciscus leuciscus	DQ664388.1
Leuciscus leuciscus	DQ664389.1
Leuciscus leuciscus	DQ664390.1
Leuciscus leuciscus	DQ664391.1
Leuciscus leuciscus	DQ664392.1
Leuciscus leuciscus	DQ664393.1
Leuciscus leuciscus	DQ664394.1
Leuciscus leuciscus	DQ664395.1
Leuciscus leuciscus	DQ664396.1
Leuciscus leuciscus	DQ664397.1
Leuciscus leuciscus	DQ664398.1
Leuciscus leuciscus	DQ664399.1
Leuciscus leuciscus	DQ664400.1
Leuciscus leuciscus	DQ664401.1
Leuciscus leuciscus	DQ664402.1
Leuciscus leuciscus	DQ664403.1
Leuciscus leuciscus	DQ664404.1
Leuciscus leuciscus	DQ664405.1
Leuciscus leuciscus	DQ664406.1
Leuciscus leuciscus	DQ664407.1
Leuciscus leuciscus	DQ664408.1
Leuciscus leuciscus	DQ664409.1
Leuciscus leuciscus	DQ664410.1
Leuciscus leuciscus	DQ664411.1
Leuciscus leuciscus	DQ664412.1
Leuciscus leuciscus	DQ664413.1
Leuciscus leuciscus	DQ664414.1
Leuciscus leuciscus	DQ664415.1
Leuciscus leuciscus	DQ664416.1
Leuciscus leuciscus	DQ664417.1
Leuciscus leuciscus	DQ664418.1
Leuciscus leuciscus	DQ664419.1
Leuciscus leuciscus	DQ664420.1
Leuciscus leuciscus	DQ664421.1
Leuciscus leuciscus	DQ664422.1
Leuciscus leuciscus	DQ664423.1
Leuciscus leuciscus	DQ664424.1
Leuciscus leuciscus	DQ664425.1
Leuciscus leuciscus	DQ664426.1

Leuciscus leuciscus	DQ664427.1
Leuciscus leuciscus	DQ664428.1
Leuciscus leuciscus	DQ664429.1
Leuciscus leuciscus	DQ664430.1
Leuciscus leuciscus	DQ664431.1
Leuciscus leuciscus	DQ664432.1
Leuciscus leuciscus	DQ664433.1
Leuciscus leuciscus	DQ664434.1
Leuciscus leuciscus	DQ664435.1
Leuciscus leuciscus	DQ664436.1
Leuciscus leuciscus	DQ664437.1
Leuciscus leuciscus	DQ664438.1
Leuciscus leuciscus	DQ664439.1
Leuciscus leuciscus	DQ664440.1
Leuciscus leuciscus	DQ664441.1
Leuciscus leuciscus	DQ664442.1
Leuciscus leuciscus	DQ664443.1
Leuciscus leuciscus	DQ664444.1
Leuciscus leuciscus	DQ664445.1
Leuciscus leuciscus	DQ664446.1
Leuciscus leuciscus	HM560100.1
Leuciscus leuciscus	HM560101.1
Leuciscus leuciscus	KF731750.1
Leuciscus leuciscus	KF731751.1
Leuciscus leuciscus	Y10449.1
Lota lota	AP004412.1
Lota lota	AY226383.1
Lota lota	AY226384.1
Lota lota	AY226385.1
Lota lota	AY226386.1
Lota lota	AY226388.1
Lota lota	AY226394.1
Lota lota	AY226395.1
Lota lota	AY226398.1
Lota lota	AY226399.1
Lota lota	AY226403.1
Lota lota	AY226404.1
Lota lota	AY226405.1
Lota lota	AY226406.1
Lota lota	AY226407.1
Lota lota	AY226408.1
Lota lota	AY226409.1
Lota lota	AY226410.1
Lota lota	AY226414.1
Lota lota	AY226418.1
Lota lota	AY226421.1
Lota lota	AY226422.1

Lota lota	AY226424.1
Lota lota	AY226425.1
Lota lota	AY226427.1
Lota lota	AY226428.1
Lota lota	AY226429.1
Lota lota	AY226431.1
Lota lota	AY226432.1
Lota lota	AY226433.1
Lota lota	AY226435.1
Lota lota	AY226437.1
Lota lota	AY226439.1
Lota lota	AY226442.1
Lota lota	AY226443.1
Lota lota	AY226444.1
Lota lota	DQ174052.1
Lota lota	DQ174053.1
Lota lota	EF191376.1
Lota lota	KC291511.1
Lota lota	KC291512.1
Lota lota	KC844053.1
Lota lota	KM201364.1
Lota lota	KM363244.1
Micropterus salmoides	AF479273.1
Micropterus salmoides	AP014537.1
Micropterus salmoides	AY115999.1
Micropterus salmoides	AY116000.1
Micropterus salmoides	AY225675.1
Micropterus salmoides	AY225676.1
Micropterus salmoides	AY225677.1
Micropterus salmoides	AY225678.1
Micropterus salmoides	AY225679.1
Micropterus salmoides	AY225680.1
Micropterus salmoides	AY225683.1
Micropterus salmoides	AY225684.1
Micropterus salmoides	DQ451323.1
Micropterus salmoides	DQ536425.1
Micropterus salmoides	HIVI070864.1
Micropterus salmoides	HM070865.1
Micropterus salmoides	HM070867.1
Micropterus salmoides	HIVI070882.1
Micropterus salmoides	HIVI070891.1
Micropterus salmoides	HIVI070900.1
Micropterus salmoides	
Microptorus salmoides	
Microptorus salmoides	
Micropterus salmoides	
iviicropterus salmoides	JNUU8/3/.1

Micropterus salmoides	KC819835.1
Micropterus salmoides	KF013213.1
Micropterus salmoides	KF013214.1
Micropterus salmoides	KM523295.1
Misgurnus fossilis	AF263097.1
Misgurnus fossilis	DQ915190.1
Misgurnus fossilis	DQ915191.1
Misgurnus fossilis	DQ915192.1
Misgurnus fossilis	DQ915193.1
Misgurnus fossilis	DQ915194.1
Misgurnus fossilis	DQ915195.1
Misgurnus fossilis	DQ915196.1
Misgurnus fossilis	DQ915197.1
Misgurnus fossilis	GU583657.1
Misgurnus fossilis	GU583659.1
Misgurnus fossilis	GU583660.1
Misgurnus fossilis	JQ011406.1
Neogobius melanostom	EU331156.1
Neogobius melanostom	EU331157.1
Neogobius melanostom	EU331158.1
Neogobius melanostom	EU331159.1
Neogobius melanostom	EU331160.1
Neogobius melanostom	EU331161.1
Neogobius melanostom	EU331162.1
Neogobius melanostom	EU331163.1
Neogobius melanostom	EU331164.1
Neogobius melanostom	EU331165.1
Neogobius melanostom	EU331166.1
Neogobius melanostom	EU331167.1
Neogobius melanostom	EU331168.1
Neogobius melanostom	EU331169.1
Neogobius melanostom	EU331170.1
Neogobius melanostom	EU331171.1
Neogobius melanostom	EU331172.1
Neogobius melanostom	EU331173.1
Neogobius melanostom	EU331174.1
Neogobius melanostom	EU331175.1
Neogobius melanostom	EU331176.1
Neogobius melanostom	EU331177.1
Neogobius melanostom	EU331178.1
Neogobius melanostom	EU331179.1
Neogobius melanostom	EU331180.1
Neogobius melanostom	EU331181.1
Neogobius melanostom	EU331182.1
Neogobius melanostom	EU331183.1
Neogobius melanostom	EU331184.1
Neogobius melanostom	EU331185.1

Neogobius melanostom EU331186.1 Neogobius melanostom EU331187.1 Neogobius melanostom EU331188.1 Neogobius melanostom EU331189.1 Neogobius melanostom EU331190.1 Neogobius melanostom EU331191.1 Neogobius melanostom EU331192.1 Neogobius melanostom EU331193.1 Neogobius melanostom EU331194.1 Neogobius melanostom EU331195.1 Neogobius melanostom EU331196.1 Neogobius melanostom EU331197.1 Neogobius melanostom EU331198.1 Neogobius melanostom EU331199.1 Neogobius melanostom EU331200.1 Neogobius melanostom EU331201.1 Neogobius melanostom EU331202.1 Neogobius melanostom EU331203.1 Neogobius melanostom EU331204.1 Neogobius melanostom EU331205.1 Neogobius melanostom EU331206.1 Neogobius melanostom EU331207.1 Neogobius melanostom EU331208.1 Neogobius melanostom EU331209.1 Neogobius melanostom EU331210.1 Neogobius melanostom EU331211.1 Neogobius melanostom EU331212.1 Neogobius melanostom EU331213.1 Neogobius melanostom EU331214.1 Neogobius melanostom EU331215.1 Neogobius melanostom EU331216.1 Neogobius melanostom EU331217.1 Neogobius melanostom EU331218.1 Neogobius melanostom EU331219.1 Neogobius melanostom EU331220.1 Neogobius melanostom EU331221.1 Neogobius melanostom EU331222.1 Neogobius melanostom EU331223.1 Neogobius melanostom EU331224.1 Neogobius melanostom EU331225.1 Neogobius melanostom EU331226.1 Neogobius melanostom EU331227.1 Neogobius melanostom EU331228.1 Neogobius melanostom EU331229.1 Neogobius melanostom EU331230.1 Neogobius melanostom EU331231.1 Neogobius melanostom EU331232.1

Neogobius melanostom EU331233.1 Neogobius melanostom EU331234.1 Neogobius melanostom EU331235.1 Neogobius melanostom EU331236.1 Neogobius melanostom EU564119.1 Neogobius melanostom EU564120.1 Neogobius melanostom EU564121.1 Neogobius melanostom EU564122.1 Neogobius melanostom EU564123.1 Neogobius melanostom EU564124.1 Neogobius melanostom KC800809.1 Neogobius melanostom KC886276.1 Neogobius melanostom KC886277.1 Neogobius melanostom KC886278.1 Neogobius melanostom KF549988.1 Neogobius melanostom KF549989.1 Neogobius melanostom KF549990.1 Neogobius melanostom U53673.1 Neogobius melanostom U53674.1 Neogobius melanostom U53675.1 Neogobius melanostom U53676.1 Neogobius melanostom U53677.1 Oncorhynchus gorbusch EF455489.1 Oncorhynchus gorbusch JF313905.1 Oncorhynchus gorbusch JF313906.1 Oncorhynchus gorbusch JF313908.1 Oncorhynchus gorbusch JF313909.1 Oncorhynchus gorbusch JF313911.1 Oncorhynchus gorbusch JF313912.1 Oncorhynchus gorbusch JF313913.1 Oncorhynchus gorbusch JF313914.1 Oncorhynchus gorbusch JF313915.1 Oncorhynchus gorbusch JF313916.1 Oncorhynchus gorbusch JF313917.1 Oncorhynchus gorbusch JF313918.1 Oncorhynchus gorbusch JF313919.1 Oncorhynchus gorbusch JF313920.1 Oncorhynchus gorbusch JF313921.1 Oncorhynchus gorbusch JF313922.1 Oncorhynchus gorbusch JF313923.1 Oncorhynchus gorbusch JN227671.1 Oncorhynchus gorbusch JN227672.1 Oncorhynchus gorbusch JN227673.1 Oncorhynchus gorbusch JN227674.1 Oncorhynchus gorbusch JN227675.1 Oncorhynchus gorbusch JN227676.1 Oncorhynchus gorbusch JN227677.1

Oncorhynchus gorbusch JN227678.1 Oncorhynchus gorbusch JN227679.1 Oncorhynchus gorbusch JX185434.1 Oncorhynchus gorbusch JX185435.1 Oncorhynchus gorbusch JX185436.1 Oncorhynchus gorbusch JX185437.1 Oncorhynchus gorbusch JX185438.1 Oncorhynchus gorbusch JX185439.1 Oncorhynchus gorbusch JX185440.1 Oncorhynchus gorbusch JX185443.1 Oncorhynchus gorbusch JX185444.1 Oncorhynchus gorbusch JX960805.1 Oncorhynchus gorbusch JX960806.1 Oncorhynchus mykiss AF125208.1 Oncorhynchus mykiss AF125209.1 Oncorhynchus mykiss AY032629.1 Oncorhynchus mykiss AY032630.1 Oncorhynchus mykiss AY032631.1 Oncorhynchus mykiss AY032632.1 Oncorhynchus mykiss AY150301.1 Oncorhynchus mykiss AY587169.1 Oncorhynchus mykiss DQ288268.1 Oncorhynchus mykiss DQ288271.1 Oncorhynchus mykiss DQ449935.1 Oncorhynchus mykiss FJ435586.1 Oncorhynchus mykiss FJ435589.1 Oncorhynchus mykiss FJ435590.1 Oncorhynchus mykiss FJ435591.1 Oncorhynchus mykiss FJ435593.1 Oncorhynchus mykiss FJ435594.1 Oncorhynchus mykiss FJ435595.1 Oncorhynchus mykiss FJ435596.1 Oncorhynchus mykiss FJ435597.1 Oncorhynchus mykiss FJ435602.1 Oncorhynchus mykiss HQ142651.1 Oncorhynchus mykiss HQ142654.1 Oncorhynchus mykiss HQ142655.1 Oncorhynchus mykiss JX960813.1 Oncorhynchus mykiss JX960814.1 Oncorhynchus mykiss JX960815.1 Oncorhynchus mykiss KP085590.1 Osmerus eperlanus EU492295.1 EU492321.1 Osmerus eperlanus Osmerus eperlanus FJ010885.1 Perca fluviatilis AF045358.1 Perca fluviatilis AF386599.1 Perca fluviatilis AF546116.1

Page 1	18	of	157
--------	----	----	-----

Perca fluviatilis	AF546117.1
Perca fluviatilis	AY929376.1
Perca fluviatilis	EU348839.1
Perca fluviatilis	EU348840.1
Perca fluviatilis	EU348841.1
Perca fluviatilis	EU348842.1
Perca fluviatilis	EU348843.1
Perca fluviatilis	EU348844.1
Perca fluviatilis	EU348845.1
Perca fluviatilis	EU348846.1
Perca fluviatilis	FJ172664.1
Perca fluviatilis	FJ788389.1
Perca fluviatilis	FJ788391.1
Perca fluviatilis	FJ788405.1
Perca fluviatilis	FJ788411.1
Perca fluviatilis	Y14776.1
Petromyzon marinus	GQ206148.1
Petromyzon marinus	NC_001626.1
Phoxinus phoxinus	AB671170.1
Phoxinus phoxinus	AP009309.1
Phoxinus phoxinus	EU352213.1
Phoxinus phoxinus	EU755036.1
Phoxinus phoxinus	KC906398.1
Phoxinus phoxinus	KC992395.1
Phoxinus phoxinus	Y10448.1
Pimephales promelas	GQ184519.1
Pimephales promelas	GQ184520.1
Pimephales promelas	GQ184521.1
Pimephales promelas	GQ184522.1
Pimephales promelas	GQ275158.1
Pimephales promelas	GQ275159.1
Pimephales promelas	KM523310.1
Platichthys flesus	AB125334.1
Platichthys flesus	AF113179.1
Platichthys flesus	EU109752.1
Platichthys flesus	EU109754.1
Platichthys flesus	EU109755.1
Platichthys flesus	EU109756.1
Platichthys flesus	EU109757.1
Platichthys flesus	EU224026.1
Platichthys flesus	EU492120.1
Platichthys flesus	EU492294.1
Platichthys flesus	FJ515658.1
Platichthys flesus	FN688414.1
Platichthys flesus	GU168917.1
Platichthys flesus	GU168918.1
Platichthys flesus	GU168922.1

Platichthys flesus	GU168923.1
Platichthys flesus	GU168926.1
Platichthys flesus	GU168932.1
Platichthys flesus	GU168938.1
Ponticola kessleri	EU444669.1
Ponticola kessleri	FJ526769.1
Ponticola kessleri	FJ526770.1
Ponticola kessleri	KC886259.1
Ponticola kessleri	KC886260.1
Proterorhinus semiluna	EU444604.1
Proterorhinus semiluna	EU444605.1
Proterorhinus semiluna	EU444606.1
Proterorhinus semiluna	EU444607.1
Proterorhinus semiluna	EU444608.1
Proterorhinus semiluna	EU444609.1
Proterorhinus semiluna	EU444612.1
Proterorhinus semiluna	EU444613.1
Proterorhinus semiluna	EU444625.1
Proterorhinus semiluna	EU444626.1
Proterorhinus semiluna	EU444627.1
Proterorhinus semiluna	EU444628.1
Proterorhinus semiluna	EU444632.1
Proterorhinus semiluna	EU444633.1
Proterorhinus semiluna	EU444634.1
Proterorhinus semiluna	EU444649.1
Proterorhinus semiluna	EU444650.1
Proterorhinus semiluna	EU444651.1
Proterorhinus semiluna	EU444658.1
Proterorhinus semiluna	EU444659.1
Proterorhinus semiluna	EU444660.1
Proterorhinus semiluna	EU444661.1
Proterorhinus semiluna	EU444662.1
Proterorhinus semiluna	EU444663.1
Proterorhinus semiluna	EU444664.1
Proterorhinus semiluna	EU444665.1
Pseudorasbora parva	AB366541.1
Pseudorasbora parva	AB677449.1
Pseudorasbora parva	AF051873.1
Pseudorasbora parva	AY533150.1
Pseudorasbora parva	AY533151.1
Pseudorasbora parva	AY533153.1
Pseudorasbora parva	AY533155.1
Pseudorasbora parva	AY533156.1
Pseudorasbora parva	AY952995.1
Pseudorasbora parva	EU934500.1
Pseudorasbora parva	EU934501.1
Pseudorasbora parva	EU934502.1

Pseudorasbora parva	EU934503.1
Pseudorasbora parva	EU934504.1
Pseudorasbora parva	HM117852.1
Pseudorasbora parva	HM117853.1
Pseudorasbora parva	HM117854.1
Pseudorasbora parva	HM117855.1
Pseudorasbora parva	HM117857.1
Pseudorasbora parva	HM117858.1
Pseudorasbora parva	HM117859.1
Pseudorasbora parva	HM117860.1
Pseudorasbora parva	HM117861.1
Pseudorasbora parva	HM117862.1
Pseudorasbora parva	HM117863.1
Pseudorasbora parva	HM117864.1
Pseudorasbora parva	HM117865.1
Pseudorasbora parva	HM117866.1
Pseudorasbora parva	HM117867.1
Pseudorasbora parva	HM117868.1
Pseudorasbora parva	HM117869.1
Pseudorasbora parva	HM117870.1
Pseudorasbora parva	HM117871.1
Pseudorasbora parva	HM117872.1
Pseudorasbora parva	HM117873.1
Pseudorasbora parva	HM117874.1
Pseudorasbora parva	HM117875.1
Pseudorasbora parva	HM117876.1
Pseudorasbora parva	HM117877.1
Pseudorasbora parva	HM117878.1
Pseudorasbora parva	HM117879.1
Pseudorasbora parva	HM117880.1
Pseudorasbora parva	HM117881.1
Pseudorasbora parva	HM117882.1
Pseudorasbora parva	HM11/883.1
Pseudorasbora parva	HM11/884.1
Pseudorasbora parva	HM11/886.1
Pseudorasbora parva	HM11/88/.1
Pseudorasbora parva	HM11/888.1
Pseudorasbora parva	HM11/889.1
Pseudorasbora parva	HM11/890.1
Pseudorasbora parva	HM11/891.1
Pseudorasbora parva	HM11/892.1
Pseudorasbora parva	HM11/893.1
Pseudorasbora parva	HM11/894.1
Pseudoraspora parva	HIVI11/896.1
Pseudorasbora parva	HM11/89/.1
Pseudorasbora parva	HM11/898.1
Pseudorasbora parva	HM117899.1

HM117900.1
HM117901.1
HM224302.1
HM560155.1
JF489615.1
JF489616.1
JF489633.1
JF489634.1
JF489636.1
JF489639.1
JF489641.1
JF489643.1
JF489645.1
JF489646.1
JF489647.1
JF489648.1
JF489651.1
JF489673.1
JF489702.1
JF489703.1
JF489717.1
JF489719.1
JF489746.1
JF489780.1
JF489808.1
JF489813.1
JF489825.1
JF489857.1
JF489858.1
JF489862.1
JF802126.1
JX472459.1
Y10453.1
AB094628.1
AB445130.1
AF356080.1
GU227740.1
GU227741.1
GU227742.1
GU227743.1
GU227744.1
GU227745.1
GU227746 1
0022//40.1
GU227747.1
GU227747.1 GU227748.1
GU227747.1 GU227748.1 GU227749.1

Pungitius pungitius	GU227751.1
Pungitius pungitius	GU227752.1
Pungitius pungitius	GU227753.1
Pungitius pungitius	GU227754.1
Pungitius pungitius	GU227755.1
Pungitius pungitius	GU227756.1
Pungitius pungitius	GU227757.1
Pungitius pungitius	GU227758.1
Pungitius pungitius	GU227759.1
Pungitius pungitius	GU227760.1
Pungitius pungitius	GU227761.1
Pungitius pungitius	GU227762.1
Pungitius pungitius	GU227763.1
Pungitius pungitius	GU227764.1
Pungitius pungitius	GU227765.1
Pungitius pungitius	GU227766.1
Pungitius pungitius	GU227767.1
Pungitius pungitius	GU227768.1
Pungitius pungitius	GU227769.1
Pungitius pungitius	GU227770.1
Pungitius pungitius	GU227771.1
Pungitius pungitius	GU227772.1
Pungitius pungitius	GU227773.1
Pungitius pungitius	GU227774.1
Pungitius pungitius	GU227775.1
Pungitius pungitius	GU227776.1
Pungitius pungitius	GU227777.1
Pungitius pungitius	GU227778.1
Pungitius pungitius	GU227779.1
Pungitius pungitius	GU227780.1
Pungitius pungitius	GU227781.1
Pungitius pungitius	GU227783.1
Pungitius pungitius	JF798872.1
Pungitius pungitius	JF798873.1
Pungitius pungitius	JF798874.1
Pungitius pungitius	JF798875.1
Pungitius pungitius	JF798876.1
Pungitius pungitius	JF798877.1
Pungitius pungitius	JF798878.1
Pungitius pungitius	JF798879.1
Pungitius pungitius	JF798880.1
Pungitius pungitius	JF798881.1
Pungitius pungitius	JF798882.1
Pungitius pungitius	JF798883.1
Pungitius pungitius	JF798884.1
Pungitius pungitius	JF798885.1
Pungitius pungitius	JF798886.1

Pungitius pungitius	JF798887.1
Pungitius pungitius	JF798888.1
Pungitius pungitius	JF798889.1
Pungitius pungitius	JF798890.1
Pungitius pungitius	JF798891.1
Pungitius pungitius	JF798892.1
Pungitius pungitius	JF798893.1
Pungitius pungitius	JF798894.1
Pungitius pungitius	JF798895.1
Pungitius pungitius	JF798896.1
Pungitius pungitius	JF798897.1
Pungitius pungitius	JF798898.1
Pungitius pungitius	JF798899.1
Pungitius pungitius	JF798900.1
Pungitius pungitius	JF798901.1
Pungitius pungitius	JF798902.1
Pungitius pungitius	JF798903.1
Pungitius pungitius	JF798904.1
Pungitius pungitius	JF798905.1
Pungitius pungitius	JF798906.1
Pungitius pungitius	JF798907.1
Pungitius pungitius	JF798908.1
Pungitius pungitius	JF798909.1
Pungitius pungitius	JF798910.1
Pungitius pungitius	JF798911.1
Pungitius pungitius	JF798912.1
Pungitius pungitius	JF798913.1
Pungitius pungitius	JF798914.1
Pungitius pungitius	JF798915.1
Pungitius pungitius	JF798916.1
Pungitius pungitius	JF798917.1
Pungitius pungitius	JF798918.1
Pungitius pungitius	JF798919.1
Pungitius pungitius	JF798920.1
Pungitius pungitius	JF798921.1
Pungitius pungitius	JF798922.1
Pungitius pungitius	JF798923.1
Pungitius pungitius	JF798924.1
Pungitius pungitius	JF798925.1
Pungitius pungitius	JF798926.1
Pungitius pungitius	JF798927.1
Pungitius pungitius	JF798928.1
Pungitius pungitius	JF798929.1
Pungitius pungitius	JQ983022.1
Pungitius pungitius	JQ983023.1
Pungitius pungitius	JQ983050.1
Rhodeus sericeus	AB366518.1

Rhodeus sericeus	DQ396683.1
Rhodeus sericeus	DQ396684.1
Rhodeus sericeus	DQ396685.1
Rhodeus sericeus	DQ396686.1
Rhodeus sericeus	KF410785.1
Rhodeus sericeus	KF410786.1
Rhodeus sericeus	KM052222.1
Rhodeus sericeus	Y10454.1
Rutilus rutilus	AF090772.1
Rutilus rutilus	AF095610.1
Rutilus rutilus	AJ555554.1
Rutilus rutilus	DQ447727.1
Rutilus rutilus	FJ025068.1
Rutilus rutilus	FJ025072.1
Rutilus rutilus	FJ025074.1
Rutilus rutilus	FJ025078.1
Rutilus rutilus	HM156751.1
Rutilus rutilus	HM156752.1
Rutilus rutilus	HM156753.1
Rutilus rutilus	HM156754.1
Rutilus rutilus	HM156755.1
Rutilus rutilus	HM156756.1
Rutilus rutilus	HM156757.1
Rutilus rutilus	HM156758.1
Rutilus rutilus	HM156759.1
Rutilus rutilus	HM560167.1
Rutilus rutilus	HM560168.1
Rutilus rutilus	KC696559.1
Rutilus rutilus	KF552102.1
Rutilus rutilus	KF731753.1
Rutilus rutilus	KF784808.1
Rutilus rutilus	KF784810.1
Rutilus rutilus	KF784811.1
Rutilus rutilus	KF784812.1
Rutilus rutilus	KF784813.1
Rutilus rutilus	KF784814.1
Rutilus rutilus	KF784815.1
Rutilus rutilus	KF784819.1
Rutilus rutilus	KF784820.1
Rutilus rutilus	KF784821.1
Rutilus rutilus	KF784822.1
Rutilus rutilus	KF784831.1
Rutilus rutilus	KF784832.1
Rutilus rutilus	KF784833.1
Rutilus rutilus	KF784838.1
Rutilus rutilus	KF784839.1
Rutilus rutilus	KF784840.1

Page 125 of 157

Rutilus rutilus	KF784841.1
Salmo salar	AF133701.1
Salmo salar	BT044011.1
Salmo salar	BT046781.1
Salmo salar	BT047531.1
Salmo salar	BT049227.1
Salmo salar	BT058163.1
Salmo salar	BT058358.1
Salmo salar	FJ435619.1
Salmo salar	HQ190888.1
Salmo salar	JN007707.1
Salmo salar	JQ390055.1
Salmo salar	JQ390056.1
Salmo salar	JX960833.1
Salmo trutta	AM910409.1
Salmo trutta	DQ451370.1
Salmo trutta	DQ451372.1
Salmo trutta	DQ451374.1
Salmo trutta	EU492108.1
Salmo trutta	FJ435623.1
Salmo trutta	FJ608987.1
Salmo trutta	FJ608988.1
Salmo trutta	FJ608989.1
Salmo trutta	FJ608990.1
Salmo trutta	FJ608991.1
Salmo trutta	FJ608992.1
Salmo trutta	FJ608993.1
Salmo trutta	FJ608994.1
Salmo trutta	FJ608995.1
Salmo trutta	FJ608996.1
Salmo trutta	FJ608997.1
Salmo trutta	FJ608998.1
Salmo trutta	FJ608999.1
Salmo trutta	FJ655773.1
Salmo trutta	JN007717.1
Salmo trutta	JX960835.1
Salmo trutta	JX960836.1
Salmo trutta	JX960837.1
Salmo trutta	JX960839.1
Salmo trutta	KF985666.1
Salmo trutta	KF985667.1
Salmo trutta	KF985670.1
Salmo trutta	KF985673.1
Salmo trutta	KF985675.1
Salmo trutta	KF985677.1
Salmo trutta	KF985678.1
Salmo trutta	KF985679.1

Salmo trutta	KF985699.1
Salmo trutta	KF985715.1
Salmo trutta	KF985726.1
Salmo trutta	KM396256.1
Salvelinus alpinus	AF154851.1
Salvelinus alpinus	AY286026.1
Salvelinus alpinus	JX960845.1
Salvelinus alpinus	JX960846.1
Salvelinus fontinalis	AF154850.1
Salvelinus fontinalis	DQ449934.1
Salvelinus fontinalis	DQ451360.1
Salvelinus fontinalis	DQ451361.1
Salvelinus fontinalis	DQ451365.1
Salvelinus fontinalis	JX960852.1
Salvelinus fontinalis	KM396246.1
Sander lucioperca	AF546122.1
Sander lucioperca	AJ001512.1
Sander lucioperca	FJ788390.1
Sander lucioperca	FJ788397.1
Sander lucioperca	GQ214533.1
Sander lucioperca	HM049965.1
Sander lucioperca	JX025363.1
Sander lucioperca	JX025364.1
Sander lucioperca	JX025365.1
Sander lucioperca	KC819823.1
Sander lucioperca	KC819826.1
Sander lucioperca	KC960518.1
Scardinius erythrophtha	AY509835.1
Scardinius erythrophtha	AY509836.1
Scardinius erythrophtha	AY509837.1
Scardinius erythrophtha	AY509838.1
Scardinius erythrophtha	AY509839.1
Scardinius erythrophtha	AY509840.1
Scardinius erythrophtha	AY509841.1
Scardinius erythrophtha	AY509842.1
Scardinius erythrophtha	EU856057.1
Scardinius erythrophtha	HM560171.1
Scardinius erythrophtha	Y10444.1
Silurus glanis	AJ969127.1
Silurus glanis	AM398435.2
Squalius cephalus	AF045995.1
Squalius cephalus	AF090752.1
Squalius cephalus	AF090755.1
Squalius cephalus	AF421792.1
Squalius cephalus	AF421801.1
Squalius cephalus	AF421803.1
Squalius cephalus	AJ002321.1

Squalius cephalus	AJ002322.1
Squalius cephalus	AJ002323.1
Squalius cephalus	AJ002325.1
Squalius cephalus	AJ002326.1
Squalius cephalus	AJ002327.1
Squalius cephalus	AJ002328.1
Squalius cephalus	AJ002329.1
Squalius cephalus	AJ002331.1
Squalius cephalus	AJ002333.1
Squalius cephalus	AJ002334.1
Squalius cephalus	AJ002335.1
Squalius cephalus	AJ002336.1
Squalius cephalus	AJ002338.1
Squalius cephalus	AJ002339.1
Squalius cephalus	AJ002340.1
Squalius cephalus	AJ002341.1
Squalius cephalus	AJ002342.1
Squalius cephalus	AJ002343.1
Squalius cephalus	AJ002344.1
Squalius cephalus	AJ002348.1
Squalius cephalus	AJ002349.1
Squalius cephalus	AJ002350.1
Squalius cephalus	AJ002352.1
Squalius cephalus	AJ252783.1
Squalius cephalus	AJ252784.1
Squalius cephalus	AJ252785.1
Squalius cephalus	AJ252786.1
Squalius cephalus	AJ252787.1
Squalius cephalus	AJ252788.1
Squalius cephalus	AJ252789.1
Squalius cephalus	AJ252790.1
Squalius cephalus	AJ252791.1
Squalius cephalus	AJ252792.1
Squalius cephalus	AJ252793.1
Squalius cephalus	AJ252794.1
Squalius cephalus	AJ252795.1
Squalius cephalus	AJ252796.1
Squalius cephalus	AJ252797.1
Squalius cephalus	AJ252798.1
Squalius cephalus	AJ252799.1
Squalius cephalus	AJ252800.1
Squalius cephalus	AJ252801.1
Squalius cephalus	AJ252802.1
Squalius cephalus	AJ252803.1
Squalius cephalus	AJ252804.1
Squalius cephalus	AJ252805.1
Squalius cephalus	AJ252806.1

Squalius cephalus	AJ389551.1
Squalius cephalus	AJ389552.1
Squalius cephalus	AJ389553.1
Squalius cephalus	AJ389554.1
Squalius cephalus	AJ389555.1
Squalius cephalus	AJ389556.1
Squalius cephalus	AJ389557.1
Squalius cephalus	AJ389558.1
Squalius cephalus	AJ389559.1
Squalius cephalus	AJ389560.1
Squalius cephalus	AJ389561.1
Squalius cephalus	AJ389562.1
Squalius cephalus	AJ389563.1
Squalius cephalus	AJ389564.1
Squalius cephalus	AJ389565.1
Squalius cephalus	AJ389566.1
Squalius cephalus	AJ389567.1
Squalius cephalus	AJ389568.1
Squalius cephalus	AJ389569.1
Squalius cephalus	AJ389570.1
Squalius cephalus	AJ389571.1
Squalius cephalus	AJ389572.1
Squalius cephalus	AJ389573.1
Squalius cephalus	AJ389574.1
Squalius cephalus	AJ389575.1
Squalius cephalus	AJ389576.1
Squalius cephalus	AJ389577.1
Squalius cephalus	AJ389578.1
Squalius cephalus	AJ389579.1
Squalius cephalus	AJ389580.1
Squalius cephalus	AY509826.1
Squalius cephalus	AY509827.1
Squalius cephalus	AY549461.1
Squalius cephalus	EU791864.1
Squalius cephalus	EU791865.1
Squalius cephalus	EU791866.1
Squalius cephalus	EU791868.1
Squalius cephalus	EU791869.1
Squalius cephalus	EU791871.1
Squalius cephalus	EU791872.1
Squalius cephalus	EU791873.1
Squalius cephalus	EU791879.1
Squalius cephalus	EU791880.1
Squalius cephalus	EU791881.1
Squalius cephalus	EU791882.1
Squalius cephalus	EU791883.1
Squalius cephalus	EU791884.1

Squalius cephalus	EU856045.1
Squalius cephalus	EU856046.1
Squalius cephalus	JQ652365.1
Squalius cephalus	Y10446.1
Thymallus thymallus	FJ853655.1
Thymallus thymallus	JX960868.1
Thymallus thymallus	JX960869.1
Tinca tinca	AB218686.1
Tinca tinca	DQ841176.2
Tinca tinca	EU856058.1
Tinca tinca	HM167942.1
Tinca tinca	HM167943.1
Tinca tinca	HM167944.1
Tinca tinca	HM167945.1
Tinca tinca	HM167946.1
Tinca tinca	HM167947.1
Tinca tinca	HM167948.1
Tinca tinca	HM167949.1
Tinca tinca	HM167951.1
Tinca tinca	HM167952.1
Tinca tinca	HM167953.1
Tinca tinca	HM167954.1
Tinca tinca	HM167955.1
Tinca tinca	HM167956.1
Tinca tinca	HM167957.1
Tinca tinca	JX974521.1
Tinca tinca	Y10451.1
Umbra pygmaea	AP013049.1
Vimba vimba	AY026404.1
Vimba vimba	AY026405.1
Vimba vimba	GQ279750.1
Vimba vimba	GQ279751.1
Vimba vimba	GQ279752.1
Vimba vimba	GQ279753.1
Vimba vimba	GQ279754.1
Vimba vimba	GQ279756.1
Vimba vimba	GQ279761.1
Vimba vimba	GQ279762.1
Vimba vimba	GQ279763.1
Vimba vimba	GQ279765.1
Vimba vimba	HM560237.1

Method Development pipeline

i.

communities.

Analytical Pipeline

- i. 4 basins (Windermere N: n=30, Windermere South: n=30, Bassenthwaite: n=6, Derwent Water,: n=6)
- ii. 3 depth transects across Windermere
- iii. 2 L volumes per sample (5x400 ml subsamples)

- i. Filtration through 0.45 uM filters
- ii. Extraction with MoBio Power water kit
- iii. Blanks included at each stage

- i. 1 step PCR protocol
- ii. Triplicate PCRs
- iii. Blanks checked on agarose
- iv. Libraries sequenced on Illumina MiSeq

4. Bioinformatics

- i. Quality trimming and adapter sequence removal
- ii. Retain sequences with >phred 30 and >minimum read length
- iii. Sequences merged into single high quality reads
- iv. Chimeric sequences identified and removed
- v. Redundant sequences removed

Final libraries i. 12S: 2,562,183 sequences ii. CytB: 3,012,249 sequences

Downstream analyses

Sample site	Basin	latitude	longitude	Total raw reads
B1	Bassenthwaite	54.6713	-3.23252	43078
B2	Bassenthwaite	54.6473	-3.21827	22844
B3	Bassenthwaite	54.648167	-3.21515	37448
B4	Bassenthwaite	54.642367	-3.20968	28584
B5	Bassenthwaite	54.638783	-3.20388	57644
B-shore	Bassenthwaite	54.666551	-3.23678	49988
D1	Derwent water	54.59285	-3.1525	22728
D2	Derwent water	54.585017	-3.14308	22682
D3	Derwent water	54.578967	-3.14525	12018
D4	Derwent water	54.575783	-3.14055	17462
D5	Derwent water	54.572717	-3.13373	28356
D-shore	Derwent water	54.59481	-3.14061	27886
W01	Windermere N basin	54.419115	-2.96878	69070
W02	Windermere N basin	54.411788	-2.97764	67800
W03	Windermere N basin	54.406964	-2.96369	96786
W04	Windermere N basin	54.39691	-2.96085	67420
W05	Windermere N basin	54.388842	-2.95005	56014
W06	Windermere N basin	54.382744	-2.94389	95464
W07	Windermere N basin	54.373274	-2.94258	56904
W08	Windermere N basin	54.367531	-2.94293	51892
W09	Windermere N basin	54.412253	-2.96348	49898
W10	Windermere N basin	54.407645	-2.95784	130504
W11 0 m	Windermere N basin	54.399328	-2.9536	90008
W11 10 m	Windermere N basin	54.399328	-2.9536	52906
W11 20 m	Windermere N basin	54.399328	-2.9536	89026
W11 30 m	Windermere N basin	54.399328	-2.9536	97578
W11 40 m	Windermere N basin	54.399328	-2.9536	66142
W11 50 m	Windermere N basin	54.399328	-2.9536	70642
W11 60 m	Windermere N basin	54.399328	-2.9536	65262
W12	Windermere N basin	54.390919	-2.94485	41332
W13	Windermere N basin	54.38277	-2.93814	60754
W14	Windermere N basin	54.3729	-2.93601	72010
W15	Windermere N basin	54.367248	-2.93675	59686
W16	Windermere S basin	54.352419	-2.94006	99902
W17	Windermere S basin	54.344103	-2.94563	85608
W18	Windermere S basin	54.335065	-2.94632	87870
W19	Windermere S basin	54.328632	-2.9474	42514
W20	Windermere S basin	54.318287	-2.95622	53126
W21	Windermere S basin	54.309392	-2.95867	63958
W22	Windermere S basin	54.301149	-2.95988	52028
W23	Windermere S basin	54.291392	-2.95637	72760
W24	Windermere S basin	54.282824	-2.95591	79590
W25	Windermere S basin	54.344027	-2.94134	71292
W26	Windermere S basin	54.335562	-2.94221	81664
W27	Windermere S basin	54.328396	-2.94326	68908
W28 0 m	Windermere S basin	54.313594	-2.95079	98364

W28 10 m	Windermere S basin	54.313594 -2.95079	96174
W28 20 m	Windermere S basin	54.313594 -2.95079	91722
W28 30 m	Windermere S basin	54.313594 -2.95079	92752
W28 40 m	Windermere S basin	54.313594 -2.95079	88994
W29	Windermere S basin	54.308946 -2.95359	101974
W30	Windermere S basin	54.301234 -2.95457	62234
W31	Windermere S basin	54.291735 -2.95343	72822
W32	Windermere S basin	54.282891 -2.95388	93770
W33	Windermere S basin	54.283275 -2.95135	83472
W34	Windermere S basin	54.291419 -2.95474	91254
W35	Windermere S basin	54.300954 -2.95683	81000
W36	Windermere S basin	54.309169 -2.95583	60774
W37	Windermere S basin	54.317485 -2.9551	61136
W38	Windermere S basin	54.328189 -2.94747	49048
W39	Windermere S basin	54.334825 -2.94507	48802
W40	Windermere S basin	54.342145 -2.94255	54504
W41	Windermere S basin	54.350749 -2.93181	60314
W42	Windermere N basin	54.372798 -2.92319	58896
W43	Windermere N basin	54.393287 -2.93916	46228
W44	Windermere N basin	54.411895 -2.97101	71636
W45	Windermere N basin	54.408059 -2.96192	52808
W46	Windermere N basin	54.397257 -2.95996	44854
W47	Windermere N basin	54.389364 -2.94947	89084
W48	Windermere N basin	54.383115 -2.94328	50968
W49	Windermere N basin	54.373741 -2.94167	43892
W50	Windermere N basin	54.367881 -2.93924	49710
Winshore_01	Windermere S basin	54.352641 -2.93986	45074
Winshore_02	Windermere S basin	54.352551 -2.93985	50362
Winshore_03	Windermere S basin	54.352083 -2.93897	33670
Winshore_04	Windermere S basin	54.351639 -2.93992	64056
Winshore_05	Windermere S basin	54.351444 -2.94089	71258
Winshore_06	Windermere S basin	54.352387 -2.93976	79970
MC01	Mock community	not applicable not applica	147912
MC02	Mock community	not applicable not applica	146060
MC03	Mock community	not applicable not applica	138688
MC04	Mock community	not applicable not applica	137102
MC05	Mock community	not applicable not applica	133380
MC06	Mock community	not applicable not applica	143298
MC07	Mock community	not applicable not applica	117776
MC08	Mock community	not applicable not applica	155108
MC09	Mock community	not applicable not applica	117994
MC10	Mock community	not applicable not applica	90396

Trimmed-total	Post-merging	Post-chimera-filter	Cluster_thres	Clusters_total	Clusters_min_cov
34773	18381	18350	1	. 1635	3
19087	10083	10006	1	. 1090	3
27790	15286	15154	1	. 1577	3
21355	11493	11345	1	. 1312	3
41804	22696	22424	1	. 2349	3
40594	21423	21105	1	. 1964	3
17571	9441	9285	1	. 844	3
14500	8358	8358	1	. 893	3
7638	4242	4227	1	. 322	3
13344	7235	7149	1	. 835	3
19748	10595	10546	1	. 1074	3
24665	12813	12755	1	. 863	3
50112	30239	29936	1	. 1838	3
50065	28914	28697	1	2683	3
69821	40153	39657	1	2432	3
51391	29190	28898	1	. 1865	3
38493	24562	24442	1	. 2835	3
75713	43813	43540	1	. 2095	3
38650	25570	254//	1	. 1/53	3
35125	22113	21994	1	. 1573	3
39343	22927	22802	1	. 1557	3
100914	53961	53920	1	. 2831	3
71927	39963	39912	1	. 2200	3
37205	23593	23544	1	. 1045	3
67129	200UZ 11022	50712	1	. 2021	د د
07120 E0299	41000	41/40	1	. 2142	د د
50500	29420	29393	1	. 1954	د د
JZ004 15510	20125	50494 20221	1	. 2054	2
28850	19726	18107	1	. 1072	2
20833	26200	26242	1	. 1349	2
42807	20390	20342	1	. 1473	3
48554	27536	27336	1	. 1708	3
71699	27550	/3716	1	2//9	3
58987	37238	367/10	1	1866	3
56693	39391	39184	1	1619	3
28843	19077	18938	- 1	1291	3
35235	23288	22996	-	1800	3
42661	28651	28596	- 1	1703	3
32740	23536	23446	1	1589	3
43477	31313	31200	- 1	. 1962	3
51166	34859	34670	- 1	. 1905	3
54981	32123	31633	- 1	. 1963	3
54110	36049	35808	1	. 1352	3
42974	30793	30758	1	. 1404	3
59910	43909	43829	1	1668	3

63331	44177	44112	1	1501	3
55191	41363	41283	1	1465	3
58488	42651	42527	1	1524	3
54667	40744	40669	1	1490	3
57964	44265	44216	1	1529	3
33215	23476	23385	1	1421	3
39228	26772	26717	1	1612	3
56898	35045	34911	1	1483	3
52343	33166	33077	1	1759	3
49859	33563	33511	1	1817	3
48276	30787	30637	1	1834	3
34893	22871	22770	1	1366	3
44718	27736	27576	1	1411	3
35220	22999	22904	1	1005	3
36303	22173	21975	1	1251	3
43905	25478	25199	1	1434	3
45347	27019	26657	1	1305	3
46505	26897	26687	1	1561	3
31884	20125	20054	1	1122	3
52149	29562	29559	1	2204	3
36465	22766	22717	1	2013	3
32860	19059	19047	1	1796	3
68029	39071	38989	1	2070	3
36514	21539	21497	1	1916	3
27828	17968	17922	1	1812	3
33870	21231	21113	1	2233	3
36544	20726	20463	1	1274	3
43282	23403	23027	1	1416	3
27148	15519	15265	1	1290	3
49513	28410	28025	1	1813	3
55060	31573	31050	1	1797	3
64089	35901	35265	1	2051	3
126511	69072	55397	1	2445	3
131623	68382	64076	1	2241	3
124525	64622	58376	1	2593	3
123444	64097	59470	1	2094	3
115638	62130	55229	1	1904	3
116450	66998	58335	1	1521	3
106573	55289	51232	1	1806	3
140554	72888	65176	1	1860	3
107083	55411	50871	1	1736	3
80262	42400	39522	1	1232	3

Cluster_above_thres	Queries	Abramis b	Alburnus a	Ameiurus	Anguilla a	Barbatula	Barbus ba	Blicca bjoe
363	16864	0	0	0	33	0	0	0
256	9050	0	0	0	18	0	0	0
343	13737	0	0	0	0	21	0	0
282	10157	0	0	0	66	82	0	0
542	20335	0	0	0	6	772	0	0
429	19364	0	0	0	1444	23	0	0
191	8539	0	0	0	0	51	0	0
203	7570	0	0	0	0	0	0	0
79	3955	0	0	0	0	0	0	0
186	6417	0	0	0	0	0	0	0
245	9609	0	0	0	43	0	0	0
162	11951	0	0	0	59	0	0	0
406	28320	342	0	0	327	0	0	0
572	26306	0	0	0	0	0	0	0
539	37477	435	0	0	0	238	0	0
415	27228	4	0	0	0	0	0	0
518	21828	0	0	0	295	0	0	0
467	41703	434	0	0	705	333	0	0
351	23879	0	0	0	0	0	0	0
341	20599	0	0	0	128	262	0	0
320	21384	0	0	0	0	201	0	0
664	51432	0	0	0	0	0	0	0
483	37935	0	0	0	0	0	0	0
352	22086	0	0	0	0	0	0	0
570	36343	0	0	0	0	0	0	0
426	39784	0	0	0	0	0	0	0
446	27704	0	0	0	0	0	0	0
440	28/05	0	0	0	014	0	0	0
304 21E	16702	0	0	0	914	0	0	0
515 279	24070	0	0	0	0	201	0	0
270	24970	197	11	0	0	291	0	0
332	25407	802	0	0	0	0 05	0	0
557	/1527	279	0	0	259	0	0	0
426	35058	275	0	0	235	97	0	0
363	37729	928	0	0	446	172	0	0
286	17785	0	0	0	342	113	0	0
362	21348	419	0	0	330	116	0	0
400	27095	322	0	0	377	0	0	0
363	22024	257	0	0	0	0	0	0
440	29455		0	n N	0	n N	0	0
400	32917	518	0	0 0	508	0 0	0	0
413	29858	448	13	0	172	154	0	0
305	34544	1621		0	0	0	0	0
318	29477	0	0	0	0	0	0	0
390	42329	0	0	0	0	0	0	0

345	42742	0	0	0	0	6	0	0
360	39980	415	0	0	0	0	0	0
398	41201	931	0	0	0	352	0	0
341	39336	1322	0	0	0	0	0	0
417	42915	1003	0	0	0	0	0	0
307	22094	596	0	0	0	211	0	0
349	25254	870	0	0	330	498	0	0
287	33538	0	0	0	794	0	0	0
358	31467	191	0	0	191	156	0	0
378	31850	951	0	0	0	0	0	0
374	28961	0	0	0	437	0	0	0
282	21529	329	0	0	0	207	0	0
294	26299	226	0	0	656	0	0	0
196	21964	1032	0	0	0	0	0	0
260	20835	2503	0	0	62	89	0	0
300	23896	560	0	0	155	54	0	0
260	25428	517	0	0	0	0	0	0
357	25309	0	0	0	277	95	0	0
242	19059	0	0	0	0	0	0	0
474	27579	0	0	0	0	0	0	0
404	20902	0	0	0	286	0	0	0
397	17447	0	0	0	0	0	0	0
434	37122	0	0	0	4	0	0	0
405	19769	0	0	0	0	122	0	0
371	16282	0	0	0	0	0	0	0
420	19073	0	0	0	793	0	0	0
274	19315	114	4	0	606	60	0	0
309	21762	89	0	0	252	176	0	0
238	14064	213	0	0	520	63	0	0
408	26435	239	0	0	215	85	0	0
407	29464	400	0	0	0	236	0	0
444	33410	171	0	0	391	366	0	0
539	53136	8985	3629	7913	0	0	0	3
485	61983	3	2721	0	0	0	3611	0
500	55906	4736	36	13	7	0	4935	3
402	57468	5238	0	14	0	0	0	0
398	53439	0	5076	6582	0	0	3	0
339	56883	19987	399	1618	0	0	0	4
398	49535	12	506	0	0	0	7686	0
478	63517	1224	50	29	0	0	1062	0
376	49267	13454	0	0	0	0	0	7
273	38367	4	6368	1655	0	0	0	0

						/ · · · · · · · · · · · · · · · · · · ·			
0	0	26	0	0	244	0	0	0	0
0	0	52	0	0	818	0	0	0	0
0	0	70	246	0	1937	0	0	0	0
0	0	31	32	0	1740	0	0	0	0
0	0	91	251	0	965	0	0	0	0
0	0	159	24	0	1153	0	0	0	0
0	0	215	58	0	90	0	0	0	0
0	0	454	0	0	4	0	0	0	0
0	0	0	0	0	193	0	0	0	0
0	0	103	17	0	625	0	0	0	0
0	0	85	0	0	138	0	0	0	0
0	0	54	0	0	0	0	0	0	0
522	0	140	689	0	0	0	0	0	0
525	0	35	1038	0	0	0	0	0	0
412	0	98	576	0	0	0	4	0	0
0	320	546	257	0	0	0	0	0	0
695	0	85	143	0	235	0	0	0	0
1058	0	537	0	0	442	0	0	0	0
0	0	376	0	0	128	0	0	0	0
200	0	84	384	0	160	0	0	0	0
164	0	67	458	0	0	0	0	0	0
0	0	39	0	0	76	0	0	0	0
522	0	232	416	0	0	0	0	0	0
397	0	0	491	0	164	0	0	0	0
210	0	572	347	0	0	0	0	0	0
706	0	0	248	0	0	0	0	0	0
86	0	83	163	0	0	0	0	0	0
0	0	0	119	0	0	0	0	82	0
505	0	150	194	0	0	0	0	0	0
0	0	0	0	0	63	0	0	0	0
0	0	0	110	0	644	0	0	0	0
0	0	534	0	0	0	0	0	374	0
208	0	292	0	0	0	0	0	0	0
0	0	231	314	0	127	0	0	0	0
272	0	0	0	0	0	0	0	0	0
107	0	97	0	0	0	0	0	0	0
85	0	0	0	0	89	0	0	0	0
242	0	56	0	0	0	0	0	0	0
0	0	543	0	0	0	0	0	0	0
0	0	116	0	0	0	0	0	0	0
0	0	272	0	0	0	0	0	0	0
168	U	0	U	U	U	U	U	U	0
303	U	72	9	U	U	U	U	U	U
113	U	3/1	U	U	U	U	U	U	U
U	U	201	U	U	U	U	U	U	U
0	U	304	0	U	464	U	0	0	0

Cottus gol Cyprinus c Esox luciu: Gasterost: Gobio gob Gymnocer Hypophth Lepomis g Leucaspiu: Leuciscus

0	0	0	0	0	344	0	0	0	0
350	0	0	0	0	464	0	0	0	0
232	0	0	0	0	0	0	0	0	0
0	0	0	47	0	380	0	0	0	0
0	0	519	0	0	0	0	0	0	0
0	0	0	0	0	75	0	0	0	0
0	0	227	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	742	0	0	190	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	107	0	0	0	0	0	0
314	0	0	0	0	0	0	0	0	0
0	0	276	0	0	0	0	0	0	0
0	0	154	0	0	0	0	0	0	0
100	0	119	154	0	9	0	0	0	0
0	0	151	55	0	0	0	0	0	0
357	0	40	820	0	0	0	0	0	0
503	0	0	286	0	0	0	0	0	0
165	0	0	240	0	0	0	0	0	0
192	0	0	530	0	0	0	0	0	0
0	0	138	78	0	0	0	0	0	0
334	0	336	0	0	260	0	0	0	0
94	0	0	84	0	156	0	0	0	0
259	0	120	0	0	0	0	0	0	0
392	0	0	257	0	351	0	0	0	0
0	97	523	101	0	0	0	0	0	0
63	0	184	61	0	0	0	0	0	0
264	0	0	23	0	0	0	0	0	0
167	0	143	0	0	0	0	0	0	0
292	0	262	0	0	0	0	0	0	0
802	0	628	136	0	53	0	0	0	0
3678	3284	3541	0	0	8	8	0	0	0
0	4392	9	0	2606	8172	0	64	4	0
7	31	3187	0	0	6421	0	0	11889	0
5	30	6142	0	0	10379	0	0	0	0
3022	6250	0	0	10	0	0	38	0	3
10055	692	409	0	0	59	6	0	0	0
0	848	14	0	347	9925	0	15	5	0
4	101	4224	0	0	14600	0	0	23635	0
0	33	4588	0	0	1159	0	0	0	0
986	8654	0	0	14	0	0	8	0	4

Leuciscus | Oncorhyn(Osmerus e Phoxinus | Pseudoras Pungitius | Rutilus rut Salmo sala Salmo trut Scardinius

38	0	0	127	0	0	0	52	170	0
78	0	0	241	0	0	170	84	60	0
0	0	0	533	0	0	887	111	437	0
0	0	0	229	0	0	123	177	251	0
82	0	0	1153	0	0	0	149	549	0
24	0	0	996	0	0	210	0	564	0
0	0	0	140	0	210	368	0	113	0
0	0	0	0	0	0	0	0	0	0
0	0	0	83	0	0	0	0	0	0
0	0	0	57	0	0	179	0	88	35
0	0	0	506	0	0	255	0	22	0
0	0	0	170	0	0	0	0	32	0
0	0	0	1368	0	0	2656	3	139	0
0	0	38	1501	0	0	218	0	1320	0
0	0	0	1824	0	0	7413	0	734	0
0	0	0	734	0	0	1302	0	354	0
0	0	0	237	0	0	290	0	154	0
0	0	0	2191	0	0	950	0	713	0
0	0	0	625	0	0	694	106	491	0
0	0	0	0	0	0	1108	0	254	0
0	0	0	701	0	0	472	0	369	0
0	0	0	468	0	0	236	0	0	0
0	0	0	464	0	0	1115	0	222	0
0	0	0	4	0	0	0	132	638	0
0	0	0	0	0	0	701	188	644	0
0	0	0	1927	0	0	1002	0	0	0
0	0	0	400	0	0	332	246	0	0
0	0	0	745	0	0	0	0	873	0
0	0	0	581	0	0	0	0	489	0
0	0	0	66	0	0	374	0	195	0
0	0	0	0	0	0	0	201	0	0
988	0	0	0	0	0	446	0	299	386
0	0	0	208	0	0	872	0	257	0
0	0	0	301	0	0	2284	0	856	0
0	0	0	0	0	0	4222	0	323	0
0	0	0	0	0	0	2738	0	362	0
0	0	0	98	0	0	1845	0	217	0
0	0	0	0	0	0	1698	0	135	0
0	0	0	0	0	0	1194	0	203	0
0	0	0	0	0	0	17	0	265	0
0	0	0	0	0	0	991	0	303	0
0	0	0	0	0	0	0	0	293	0
0	0	0	0	0	0	4856	0	99	93
0	0	0	0	0	0	3201	0	568	0
0	0	0	0	0	0	1145	0	361	0
0	0	0	0	0	0	1663	0	0	0

Molecular Ecology

0	0	0	0	0	0	521	0	0	0
0	0	0	0	0	0	1411	0	181	0
0	0	0	0	0	0	1398	0	427	0
0	0	0	434	0	0	1945	256	0	0
0	0	0	0	0	0	1822	0	0	0
0	0	0	0	0	0	327	0	148	0
0	0	0	0	0	0	387	0	0	0
0	0	0	986	0	0	1405	0	589	0
0	0	0	0	0	0	226	0	458	0
0	0	0	0	0	0	943	0	0	0
0	0	0	0	0	0	1678	0	0	0
0	0	0	0	0	0	325	0	0	0
0	0	0	0	0	0	1908	0	140	0
0	0	0	0	0	0	2013	0	448	0
0	0	0	0	0	0	2164	0	359	0
0	47	0	0	0	0	3598	0	0	0
0	0	0	0	0	0	3237	0	376	0
0	0	0	648	0	0	461	194	201	0
0	0	0	0	0	0	491	0	478	0
0	0	0	0	0	0	512	0	116	0
0	0	0	377	0	0	252	0	0	0
0	0	0	41	0	0	216	0	44	0
0	0	0	1730	0	0	3	0	300	0
0	0	0	160	0	0	0	0	283	0
0	0	0	452	0	0	162	0	100	0
0	0	0	5	0	0	1028	0	454	0
0	0	0	0	0	0	1362	0	332	98
0	0	0	0	0	0	1603	56	269	0
0	0	0	0	0	0	2347	0	249	0
0	0	0	0	0	0	3644	0	457	0
0	0	0	108	0	0	4593	0	837	0
0	0	0	0	0	0	3599	0	177	0
5	0	0	4	19	4	0	0	3	157
7029	0	0	5	3447	0	3124	0	19	27
0	0	0	5279	15	0	3	0	4219	83
0	0	0	6505	33	9	2163	0	5802	8
6297	0	0	0	3475	4128	6	0	0	66
3	0	0	13	0	4	0	0	10	41
1598	0	0	8	5731	0	973	0	7	25
41	0	0	624	29	11	0	0	8005	83
0	0	0	6746	34	3	396	0	6454	3
8380	0	0	3	342	882	4	0	0	11

Squalius c	Tinca tinca	Umbra py	Coregonus	Salvelinus	Cyprinida	Percidae	Salmonida	nohit	Total
0	0	0	0	0	0	322	0	15852	16864
16	0	0	0	0	0	263	0	7250	9050
0	0	0	0	0	0	207	0	9288	13737
0	0	0	0	0	0	484	0	6942	10157
0	0	0	0	0	0	0	4	16313	20335
185	0	0	0	0	0	1635	0	12947	19364
0	0	0	78	0	0	875	0	6341	8539
0	0	0	0	0	0	0	0	7112	7570
0	0	0	0	0	0	192	0	3487	3955
0	0	0	65	0	0	99	0	5149	6417
0	0	0	0	0	0	206	0	8354	9609
8	0	0	0	0	0	145	0	11483	11951
0	0	0	0	0	0	1825	0	20309	28320
0	0	0	0	0	0	0	0	21631	26306
0	0	0	0	0	0	1392	0	24351	37477
0	129	0	0	191	0	886	0	22505	27228
0	0	0	0	119	0	828	0	18747	21828
0	0	0	0	310	0	3007	0	31023	41703
0	0	0	0	214	0	2350	0	18895	23879
0	0	0	0	173	0	1809	0	16037	20599
0	0	0	0	90	0	1098	0	17764	21384
0	0	0	0	0	0	950	0	49663	51432
0	0	0	0	0	0	761	0	34203	37935
0	0	0	0	0	0	125	0	20135	22086
0	0	0	0	0	0	1277	0	32404	36343
0	0	0	0	230	0	1430	0	34241	39784
0	0	0	0	0	0	2000	0	24394	27704
0	0	0	0	0	0	1049	0	25837	28705
0	0	0	0	160	0	572	0	24257	27822
0	0	0	0	0	0	700	0	15385	16783
0	0	0	0	156	0	781	0	22787	24970
0	0	0	256	0	0	1701	0	24305	29487
0	0	0	0	0	11	1681	0	21506	25932
0	0	0	0	0	0	2297	0	34579	41527
0	0	0	0	0	0	1877	0	27929	35058
0	0	0	0	0	0	1814	0	31065	37729
0	0	0	0	0	0	903	0	14093	17785
0	0	0	0	0	0	1624	0	16728	21348
0	0	0	0	0	0	842	0	23614	27095
0	0	0	0	0	0	1055	0	20314	22024
0	0	0	0	0	0	2029	0	25860	29455
0	0	0	0	0	0	5816	0	25614	32917
0	0	0	0	0	0	2393	0	21186	29858
0	0	0	0	0	0	1965	0	26699	34544
0	0	0	0	0	0	721	0	27049	29477
0	0	0	0	0	0	1509	0	38389	42329

0	0	0	0	0	0	2099	0	39772	42742
0	0	0	0	0	0	1098	0	36061	39980
0	0	0	0	0	0	1601	0	36260	41201
0	0	0	0	0	0	988	0	33964	39336
0	0	0	0	0	0	1197	0	38374	42915
0	0	229	0	0	0	1143	0	19365	22094
0	0	0	0	0	0	1635	0	21307	25254
0	0	0	0	0	0	3939	3	25822	33538
0	0	0	0	0	0	1913	0	28332	31467
0	0	0	0	0	0	1881	0	27143	31850
0	0	0	0	0	0	3147	0	23699	28961
0	0	0	0	0	0	1637	0	18924	21529
0	0	0	0	0	0	1287	0	21768	26299
0	0	0	0	0	0	1219	0	16976	21964
0	0	0	0	0	0	1211	3	14290	20835
0	0	0	0	0	4	1057	0	18039	23896
0	0	0	0	1096	0	1460	5	18531	25428
0	0	0	0	0	0	1361	0	20855	25309
0	0	0	0	0	0	625	0	16676	19059
0	0	0	0	0	0	0	0	26546	27579
0	0	0	0	0	0	344	0	18921	20902
0	0	0	0	0	0	437	0	16493	17447
0	0	0	0	0	0	2362	0	31793	37122
0	0	0	0	0	0	469	0	18401	19769
0	0	0	0	280	0	747	0	14162	16282
0	0	0	0	0	0	1401	0	14392	19073
0	0	0	0	0	0	1738	0	14280	19315
0	0	0	0	72	0	1190	3	17744	21762
0	0	0	0	0	0	379	0	10006	14064
0	0	0	0	0	0	1913	0	19572	26435
0	0	0	0	0	0	1582	3	21144	29457
0	0	0	0	0	0	3098	0	23989	33410
5248	983	1426	290	0	0	0	0	13948	53136
6	3	3	0	0	0	2847	0	23891	61983
0	527	1793	329	0	0	0	0	12393	55906
6354	667	6	451	0	0	3319	0	10343	57468
7	0	0	0	0	0	0	0	18476	53439
9891	1094	461	2475	0	0	5	0	9657	56883
5	3	3	0	0	0	2504	0	19320	49535
0	125	2174	63	0	0	0	0	7433	63517
648	77	0	38	0	0	4780	0	10847	49267
15	0	3	3	0	0	0	0	11031	38367

Sample site	Basin	Lattitude	Longitude	Total raw reads
B1	Bassenthwaite	54.6713	-3.232517	15756
B2	Bassenthwaite	54.6473	-3.218267	7844
B3	Bassenthwaite	54.648167	-3.21515	36180
B4	Bassenthwaite	54.642367	-3.209683	17638
B5	Bassenthwaite	54.638783	-3.203883	60480
B-shore	Bassenthwaite	54.666551	-3.236783	43218
D1	Derwent water	54.59285	-3.1525	40982
D2	Derwent water	54.585017	-3.143083	1052
D3	Derwent water	54.578967	-3.14525	41356
D4	Derwent water	54.575783	-3.14055	22932
D5	Derwent water	54.572717	-3.133733	39498
D-shore	Derwent water	54.59481	-3.140609	7688
W01	Windermere N basin	54.419115	-2.968784	78050
W02	Windermere N basin	54.411788	-2.977643	72898
W03	Windermere N basin	54.406964	-2.963693	38054
W04	Windermere N basin	54.39691	-2.960845	43938
W05	Windermere N basin	54.388842	-2.95005	52578
W06	Windermere N basin	54.382744	-2.943889	41950
W07	Windermere N basin	54.373274	-2.942581	3462
W08	Windermere N basin	54.367531	-2.942934	43426
W09	Windermere N basin	54.412253	-2.963476	58590
W10	Windermere N basin	54.407645	-2.957843	81852
W11 0 m	Windermere N basin	54.399328	-2.953599	94870
W11 10 m	Windermere N basin	54.399328	-2.953599	67994
W11 20 m	Windermere N basin	54.399328	-2.953599	98508
W11 30 m	Windermere N basin	54.399328	-2.953599	17818
W11 40 m	Windermere N basin	54.399328	-2.953599	83384
W11 50 m	Windermere N basin	54.399328	-2.953599	82260
W11 60 m	Windermere N basin	54.399328	-2.953599	29312
W12	Windermere N basin	54.390919	-2.944854	64006
W13	Windermere N basin	54.38277	-2.938143	61554
W14	excluded Windermere N basin	54.3729	-2.93601	63644
W15	Windermere N basin	54.367248	-2.936747	42464
W16	Windermere S basin	54.352419	-2.940061	62730
W17	Windermere S basin	54.344103	-2.945634	79044
W18	Windermere S basin	54.335065	-2.946318	57032
W19	Windermere S basin	54.328632	-2.947401	28800
W20	Windermere S basin	54.318287	-2.956222	61970
W21	Windermere S basin	54.309392	-2.958669	53360
W22	Windermere S basin	54.301149	-2.959883	20864
W23	Windermere S basin	54.291392	-2.956366	92040
W24	Windermere S basin	54.282824	-2.95591	63442
W25	Windermere S basin	54.344027	-2.941337	56856
W26	Windermere S basin	54.335562	-2.942206	50300
W27	Windermere S basin	54.328396	-2.943259	74326
W28 0 m	Windermere S basin	54.313594	-2.950786	62538
W28 10 m	Windermere S basin	54.313594	-2.950786	69550
-------------	--------------------	----------------	----------------	-------
W28 20 m	Windermere S basin	54.313594	-2.950786	53484
W28 30 m	Windermere S basin	54.313594	-2.950786	39668
W28 40 m	Windermere S basin	54.313594	-2.950786	65004
W29	Windermere S basin	54.308946	-2.953592	86172
W30	Windermere S basin	54.301234	-2.954574	54398
W31	Windermere S basin	54.291735	-2.95343	59980
W32	Windermere S basin	54.282891	-2.953878	69254
W33	Windermere S basin	54.283275	-2.951353	20856
W34	Windermere S basin	54.291419	-2.954738	67032
W35	Windermere S basin	54.300954	-2.95683	75240
W36	Windermere S basin	54.309169	-2.955833	62938
W37	Windermere S basin	54.317485	-2.955099	18258
W38	Windermere S basin	54.328189	-2.947473	43632
W39	Windermere S basin	54.334825	-2.94507	38210
W40	Windermere S basin	54.342145	-2.942546	39728
W41	Windermere S basin	54.350749	-2.931811	35004
W42	Windermere N basin	54.372798	-2.923187	51538
W43	Windermere N basin	54.393287	-2.939156	51738
W44	Windermere N basin	54.411895	-2.971011	46256
W45	Windermere N basin	54.408059	-2.961924	45876
W46	Windermere N basin	54.397257	-2.959958	45500
W47	Windermere N basin	54.389364	-2.94947	1192
W48	Windermere N basin	54.383115	-2.943279	64660
W49	Windermere N basin	54.373741	-2.941665	45306
W50	Windermere N basin	54.367881	-2.939239	82234
Winshore_01	Windermere S basin	54.352641	-2.939863	55270
Winshore_02	Windermere S basin	54.352551	-2.939846	60134
Winshore_03	Windermere S basin	54.352083	-2.938972	9140
Winshore_04	Windermere S basin	54.351639	-2.939917	59608
Winshore_05	Windermere S basin	54.351444	-2.940889	58090
Winshore_06	Windermere S basin	54.352387	-2.939755	33114
MC01	Mock community	not applicable	not applicable	95154
MC02	Mock community	not applicable	not applicable	74520
MC03	Mock community	not applicable	not applicable	87184
MC04	Mock community	not applicable	not applicable	95040
MC05	Mock community	not applicable	not applicable	89242
MC06	Mock community	not applicable	not applicable	84336
MC07	Mock community	not applicable	not applicable	93726
MC08	Mock community	not applicable	not applicable	83718
MC09	Mock community	not applicable	not applicable	91180
MC10	Mock community	not applicable	not applicable	72406

Trimmed-total	Post-merging	Post-chimera-filter	Cluster_thres	Clusters_total	Clusters_min_cov
9352	5951	5951	1	362	3
6839	5086	5072	1	362	3
31177	23991	23985	1	1360	3
14449	10932	10931	1	742	3
51443	40110	40062	1	2039	3
36964	27901	27714	1	1429	3
34865	27851	27848	1	1059	3
887	747	747	1	71	3
36271	27643	27641	1	853	3
18791	13180	13180	1	629	3
32413	30505	30498	1	1303	3
6656	5097	5097	1	278	3
67527	51654	51593	1	2572	3
64649	47457	47423	1	2149	3
34282	25331	25298	1	1431	3
38568	31056	31043	1	1497	3
44622	34827	34825	1	1784	3
36741	29769	29760	1	1510	3
3144	2295	2287	1	191	3
38439	30612	30285	1	1876	3
51724	40556	40526	1	2209	3
67540	63104	63103	1	1585	3
77856	69531	69531	1	2177	3
56402	46563	46556	1	2249	3
83653	67967	67956	1	2781	3
150/8	113/0	11368	1	542	3
6/461	613/0	61370	1	1974	3
/0409	55138	55134	1	2544	3
26027	191/1	191/1	1	1095	3
56025	47097	47080	1	2103	3
53916	46966	46966	1	1939	3
56299	45504	45504	1	2012	5
38187	28375	283/3	1	1225	5
55521	43030	43024	1	2013	5
/116/	52158	52130	1	2031	5 1
50753	38990	38988	1	1705	3
2000	20032	20031	1	1071	3
54040 45750	45769	43709	1	1971	د د
43730	12251	12251	1	. 1070	2
10202	13331	13331	1	2115	2
09065 E6120	22025	33022	1	2115	د د
10222	42822	42758 10E01	1	1007	3
45555 17216	40005 220FE	22052	1	1020	د د
42040	50505	55552	1	2025	د د
03013 E2701	12025	71005	1	1000	נ מ
55782	42020	41980	T	1003	3

58871	46488	46487	1	1786	3
45554	35707	35518	1	2066	3
32768	28826	28826	1	1422	3
55595	43208	43112	1	2059	3
74505	56740	56736	1	2216	3
46182	41287	41285	1	1502	3
52254	45158	45157	1	1459	3
59921	50164	50163	1	1902	3
18828	13776	13775	1	725	3
58152	48153	48143	1	1947	3
67172	52717	52712	1	2141	3
56690	40982	40974	1	1876	3
15542	12535	12533	1	749	3
37068	33523	33522	1	1453	3
31587	25984	25974	1	1294	3
34753	28998	28947	1	1503	3
30617	24834	24771	1	1507	3
45136	36435	36421	1	1858	3
44811	38183	38182	1	1462	3
37668	33193	33192	1	1298	3
39750	31113	31113	1	1256	3
38130	32935	32935	1	1277	3
745	729	728	1	49	3
54598	44852	44848	1	1849	3
38118	30486	30484	1	1345	3
60086	48272	48261	1	1739	3
48285	38025	37902	1	2148	3
51665	42168	42146	1	2107	3
7808	6554	6468	1	592	3
52538	42950	42865	1	2335	3
51394	41495	41401	1	2104	3
29554	22641	22472	1	1459	3
78443	59764	49029	1	4298	3
53831	42141	35934	1	3193	3
77472	57146	47533	1	4377	3
85132	62296	52563	1	4214	3
65057	51927	46212	1	3082	3
74227	53187	43828	1	3248	3
63229	51102	44459	1	3358	3
71484	56607	50013	1	3599	3
81223	57234	47107	1	3487	3
59604	44086	37386	1	2573	3

Cluster_above_thres	Queries	Abramis br	Alburnus a	Ameiurus r	Anguilla an	Barbatula k	Barbus bar
68	5634	0	0	0	0	0	0
71	4752	41	0	0	0	0	0
224	22674	0	0	0	0	0	0
166	10290	0	0	0	0	0	0
348	38101	46	0	0	0	0	0
255	26320	0	15	8	5568	0	0
281	26850	0	0	0	0	0	0
34	695	0	0	0	0	0	0
233	26808	0	0	0	0	0	0
146	12597	0	0	0	0	0	0
291	29264	21	0	0	0	0	7
45	4844	0	0	0	430	0	0
416	49033	6445	0	0	0	0	0
570	45514	0	0	0	0	0	0
185	238/8	6354	0	0	1548	/	0
239	29593	0	0	0	0	0	0
293	33120	0	0	0	0	0	0
247	28338	0	0	0	324	13	0
33	2119	0	0	0	0	0	0
293	284/3	0	0	0	3004	207	0
348 F19	38318	0	0	0	2094	0	0
518	67527	0	0	0	0	0	0
0CC דסכ	0/52/	0	0	0	0	0	0
507	65197	0	0	0	0	0	0
84	10200	0	0	0	0	0	0
5/13	59604	0	0	0	0	0	0
545 //70	52671	0	0	0	0	0	0
478	18103	0	0	0	4278	0	0
382	45051	0	0	0	- <u>1</u> 2,0	0	0
407	45147	0	0	0	0	0	3
369	43512	3799	0	0	0	0	0
241	27183	8	0	0	0	0	0
342	41012	0	0	0	1046	186	0
460	50199	27820	0	0	0	0	0
336	37351	988	0	0	1315	0	0
161	19130	1891	0	0	4779	0	0
384	41888	2903	0	0	0	0	0
278	36162	8524	0	0	22	0	0
118	12620	61	0	0	0	0	0
409	53488	0	0	0	19114	0	0
427	41120	2911	0	0	1319	66	0
436	38741	3843	0	0	0	65	0
278	32216	3903	0	0	1372	0	0
397	49564	12439	0	0	0	0	0
333	40179	14894	0	0	0	0	0

387	44733	0	0	0	0	0	0
322	33528	3625	0	0	0	0	0
268	27490	0	0	0	0	0	0
361	41050	3388	0	0	0	0	0
475	54568	23060	0	0	0	0	0
321	39849	223	0	0	0	0	0
348	43727	5	0	0	0	0	0
392	48325	0	0	0	0	0	0
76	13010	5449	0	0	0	0	0
445	46298	0	0	0	0	0	0
409	50614	10583	0	0	1704	0	0
349	39137	10145	0	0	0	0	0
125	11856	2171	0	0	0	0	0
294	32162	0	0	0	1038	0	0
228	24749	6600	0	0	0	0	0
252	27527	2575	0	0	0	0	0
238	23348	2275	0	0	0	0	0
256	34539	0	0	0	0	0	0
288	36799	0	0	0	0	0	0
296	32005	0	0	0	0	0	0
259	29874	0	0	0	0	0	0
249	31693	0	0	0	0	0	0
23	693	10	0	0	0	0	0
333	43008	0	0	0	0	0	0
235	29149	9350	0	0	0	0	0
464	46711	0	0	0	0	0	0
334	35819	599	0	0	3801	11	0
373	40133	0	0	0	1549	3	0
139	5970	0	0	0	245	0	0
405	40617	5173	0	0	0	159	0
392	39402	0	0	0	925	0	0
247	21101	0	0	0	2388	0	0
865	44969	8193	1860	5805	0	0	0
688	32938	26	765	0	3	0	2526
833	43394	10769	0	42	0	0	3533
975	48683	15074	0	10	0	0	0
673	43298	393	2232	5613	0	0	0
728	40825	18219	136	1401	0	0	3
768	41386	14	70	7	0	0	5619
746	46582	4124	8	100	0	0	1486
825	43911	22141	96	337	0	0	0
598	34978	36	7615	2237	0	0	0

Joregonus	Collus gob	Cyprinus Ce	LSOX IUCIUS	Gasteroste	Gonio Soni	Gymnocep	rehound &	Leucaspius
0	0	0	0	0	0	20	0	0
0	8	5	0	0	0	1689	0	0
0	0	0	165	35	0	5980	0	0
0	0	0	4	0	0	2288	0	0
0	0	7	10	0	0	3817	0	0
0	0	51	511	0	0	5160	4	0
0	0	0	58	0	0	783	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	3	0	0	6	0	10
0	0	0	427	0	0	12	0	0
0	0	0	0	1195	0	0	0	0
0	3113	0	0	2066	0	0	0	0
0	875	0	56	0	0	0	0	0
0	0	0	921	51	0	0	0	0
0	6130	0	0	0	0	0	0	0
0	4341	0	1605	656	0	0	0	0
0	434	0	0	0	0	0	0	0
0	2178	0	0	4662	0	0	0	0
0	8248	0	0	2005	0	0	0	0
0	0	0	0	78	0	0	0	0
0	1392	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	4267	0	0	0	0
0	28	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	1307	0	0	0	0
0	2005	3	0	0	0	0	0	0
0	0	0	1940	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	144	389	0	0	0	0
0	0	0	89	0	0	0	0	0
0	7	0	84	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	1698	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	12	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	1407	0	0	0	0	0
0	0	0	303	957	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

Coregonus Cottus gob Cyprinus ca Esox lucius Gasteroste Gobio gobi Gymnocep Lepomis gil Leucaspius

0	0	0	0	0	0	0	0	0
0	3371	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	9	0	0	0	0	0
0	0	0	33	0	0	0	0	0
0	0	0	5379	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	1611	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	1151	0	86	0	0	0	0	0
0	5481	0	0	0	0	0	0	0
0	6919	0	0	1275	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	4379	0	0	0	0	0	0	0
0	1137	0	0	0	0	0	0	0
0	0	0	0	2733	0	0	0	0
0	327	1740	5979	2740	0	0	0	0
0	3400	0	1534	0	0	0	0	0
0	438	0	286	0	0	0	0	0
0	2298	0	0	0	0	0	0	0
0	0	0	3790	0	0	0	0	0
0	1270	0	2076	0	0	0	0	0
0	1864	7059	2467	0	0	3	4	0
0	0	9349	16	0	32	2851	8828	10
0	5	80	4642	0	0	3123	59	8216
0	0	180	9733	0	0	5646	0	0
4	4704	16713	0	0	0	0	5196	0
0	7118	2874	60	0	0	0	0	0
0	0	4030	16	0	0	5306	15178	0
0	4	314	4784	0	0	7071	100	7624
8	63	442	6859	0	0	510	4	0
0	779	17813	3	0	0	0	1133	3

0	0	0	0	0	0	482	27	0
0	1466	0	0	0	0	24	9	0
0	6754	0	0	0	0	638	2256	0
0	2073	7	0	0	0	1116	56	0
0	9969	328	0	0	0	0	3276	0
0	12066	25	0	0	0	0	611	0
0	21686	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	26592	0	0	0	0	0	0	0
0	4	0	0	0	0	0	54	0
0	17	47	0	0	0	0	3	0
0	3839	0	0	0	0	0	0	0
0	25700	0	0	0	359	19	1481	0
0	0	166	0	0	0	0	2150	0
0	7938	249	0	0	2153	0	349	0
0	7564	0	0	0	0	0	4111	602
0	5120	0	0	0	0	0	2887	0
0	6698	29	0	0	105	0	276	298
0	867	508	0	0	0	0	0	0
0	8449	2823	0	0	0	0	3059	0
0	6	46	0	0	0	0	0	0
0	4	0	0	0	15	0	563	0
0	9079	0	0	0	0	0	140	0
0	3248	2601	0	0	0	0	2868	0
0	20083	0	0	0	1216	0	0	0
0	10488	0	0	0	0	0	0	0
0	0	0	0	0	25	0	0	0
0	3698	0	0	0	0	0	3270	0
0	0	0	0	0	0	31	756	212
0	5487	0	0	0	0	866	0	0
0	4362	0	0	0	0	0	0	0
0	2302	0	0	0	7	0	3	0
0	22317	0	0	0	0	0	0	0
0	14132	0	0	0	6927	0	0	0
0	10492	0	0	1838	3022	0	140	0
0	4423	0	0	0	247	0	0	0
0	5169	0	0	0	0	0	0	0
0	17145	0	7553	0	89	0	1819	0
0	3150	0	0	0	2366	0	0	0
0	4878	0	0	0	51	0	4118	0
0	10269	0	0	0	16	0	0	0
0	26761	0	0	0	0	0	814	0
0	15563	0	0	0	1387	0	320	0
0	5407	0	0	0	665	0	2955	0
0	13720	0	0	0	0	0	0	0
0	11691	0	0	0	870	0	0	0

Leuciscus I Perca fluvi: Phoxinus p Platichthys Pseudorasł Rutilus ruti Salmo sala: Salmo truti Salvelinus a

0	18683	0	0	0	0	0	0	0
0	5620	0	0	0	0	0	0	0
0	11	0	0	0	0	0	0	0
0	15391	2985	0	8756	0	0	0	0
0	6	0	0	6	3	0	0	0
0	11130	0	0	0	2411	0	0	0
0	20703	0	0	0	0	0	0	0
0	10615	0	0	0	0	0	0	0
0	7247	0	0	0	0	0	0	0
0	23364	0	0	0	2085	0	0	0
0	21754	0	0	5	56	0	6756	0
0	5805	0	0	18577	694	0	0	0
0	3064	0	0	0	0	0	0	0
0	1963	0	0	0	109	0	0	0
0	2400	89	0	0	394	0	0	0
0	6605	0	0	0	1865	0	0	0
0	3446	0	0	0	121	0	238	2518
0	9469	0	0	0	262	0	317	0
0	102	519	0	0	0	0	3552	0
0	6316	41	0	0	82	0	1096	12
0	0	149	0	0	194	0	94	0
0	9567	0	0	0	0	0	0	0
0	6	0	0	0	0	0	0	0
0	1027	105	0	0	0	0	1524	0
0	5434	0	0	0	0	0	0	0
0	33176	0	0	0	0	0	0	0
0	7425	314	0	0	19	266	58	0
0	13293	0	0	0	298	0	3513	0
0	1015	0	0	0	39	104	339	0
0	3953	0	0	0	728	0	2846	0
0	12861	0	0	0	794	0	1068	0
0	10376	0	0	0	222	0	618	0
0	10	3	0	0	0	0	6	0
322	2197	3	0	1340	149	0	10	0
0	0	2307	0	0	0	0	1919	0
0	3521	2295	0	0	155	0	1653	0
93	0	0	0	923	0	0	0	0
0	0	0	0	0	0	0	0	0
34	4792	0	0	2158	23	0	7	0
0	0	138	0	7	0	0	3744	0
0	3782	3130	0	11	13	0	2566	0
472	0	0	0	185	0	0	0	0

Scardinius	Squalius ce	Tinca tin	Umbra p	Ameiuru	Coregon	Leuciscus	Salmo	Salvelinu	Cyprinida	Gasteros
0	0	0	0	0	0	0	94	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	620	0	0	0
0	0	0	0	0	0	0	417	0	0	0
0	0	0	0	0	0	0	207	0	0	0
0	0	0	0	0	0	0	149	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	8	0	0	0
0	0	0	6	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	272	0	0	0
0	0	0	0	0	0	0	329	0	0	3
0	0	0	0	0	0	0	89	0	3	0
0	0	0	0	0	0	0	696	20	0	0
0	0	0	0	0	0	0	682	0	0	0
0	0	0	0	0	0	0	19	45	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	176	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	38	0	0	0
0	0	0	0	0	0	0	11	0	0	0
0	0	0	0	0	0	0	1963	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	24	0	0	0
0	0	0	0	0	0	0	1057	0	0	0
0	0	0	0	0	0	0	1027	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	4	0
0	0	0	0	0	0	0	0	0	20	0
0	0	0	0	0	0	0	646	0	20	0
0	0	0	0	0	0	0	0.0	0	3	0
0	0	0	0	0	0	0	634	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	234	0	0	0
0	0	0	0	0	0	0	27	0	0	0
0	0	0	0	0	0	0	2098	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	4	0

0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	3	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	76	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	482	0	3	0
0	0	0	0	0	0	0	0	0	7	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	28	531	0	0
0	0	0	0	0	0	0	68	0	0	0
0	0	0	0	0	0	0	1477	0	0	0
0	0	0	0	0	0	0	226	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	364	0	0	0
0	0	0	0	0	0	0	0	0	179	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	29	0	0	0
0	0	0	0	0	0	0	321	0	0	0
0	0	0	0	0	0	0	22	0	0	0
0	0	0	0	0	0	0	182	0	332	0
0	0	0	0	0	0	0	189	0	3	0
0	0	0	0	0	0	0	0	0	0	0
7	2046	273	1788	6363	76	0	0	0	216	0
0	0	0	10	0	0	46	0	0	0	0
30	0	345	4827	0	124	0	393	0	276	0
7	2920	296	13	27	170	0	730	0	352	0
0	83	0	26	3879	0	13	0	0	0	0
3	3898	55	860	277	285	0	0	0	300	0
0	0	0	13	3	0	0	0	0	0	0
38	0	33	12943	7	39	0	427	0	63	0
3	400	37	49	36	15	0	894	0	371	0
0	7	4	0	613	0	149	0	0	0	0

Percidae	Salmonic	Percinae	Clupeoce	nohit	total
0	0	0	0	5011	5634
0	0	22	0	1488	4752
93	0	149	0	5984	22674
40	0	0	0	4289	10290
3	0	161	0	20277	38101
22	0	1404	0	726	26320
16	0	616	0	3691	26850
0	0	0	0	695	695
116	0	100	0	0	26808
0	0	0	0	12531	12597
0	0	0	0	29144	29264
7	0	24	0	105	4844
70	0	2006	0	11486	49033
0	0	0	0	37687	45514
108	0	42	0	4107	23878
0	0	176	0	15452	29593
25	0	76	0	18200	33120
0	0	69	0	13860	28338
0	0	0	0	310	2119
82	0	34	0	6800	28473
0	0	0	0	25919	38318
0	0	0	0	61082	61780
70	0	37	0	56798	67527
14	0	116	0	33541	44351
34	0	239	0	39348	65187
62	0	151	0	71	10800
0	0	0	0	59579	59604
0	0	20	0	43717	52671
0	0	0	0	10794	18103
50	0	0	0	35651	45051
7	0	65	0	40710	45147
0	0	55	0	36813	43512
68	0	328	0	4373	27183
0	0	419	0	18211	41012
34	0	1307	0	5542	50199
0	0	0	0	28680	37351
90	0	466	0	6715	19130
20	0	165	0	11536	41888
27	0	13	0	22057	36162
0	0	263	0	2615	12620
0	0	151	0	23938	53488
181	0	3206	0	5628	41120
86	0	259	0	15784	38741
12	0	104	0	14440	32216
0	0	0	0	23405	49564

24

0

557

0 12139 40179

138	0	4	0	25908	44733
44	0	267	0	20601	33528
0	0	0	0	27479	27490
20	0	75	0	10435	41050
0	0	0	0	31490	54568
14	0	227	0	25844	39849
21	0	168	0	22830	43727
27	0	197	0	37477	48325
82	0	99	0	24	13010
115	0	169	0	15186	46298
96	0	2818	0	6357	50614
0	0	123	0	3786	39137
43	0	0	0	4967	11856
4	0	34	0	29014	32162
0	0	74	0	15192	24749
91	0	0	0	15154	27527
0	0	0	0	8702	23340
41	0	141	0	16047	34539
0	0	0	0	31149	36799
63	0	737	0	23432	32005
0	0	0	0	29437	29874
101	0	57	0	21968	31693
0	0	0	0	677	693
13	0	0	0	35596	43008
47	0	14	0	12988	29149
93	0	519	0	10190	46711
34	0	28	0	12449	35819
136	0	276	0	15810	40133
0	0	45	0	3437	5970
0	0	71	0	24875	40617
105	0	312	0	19355	39402
23	0	587	0	3541	21101
0	0	0	0	6921	44964
57	0	208	0	4190	32938
46	3	17	0	2638	43394
119	6	481	0	5295	48683
0	0	0	135	3285	43292
0	0	0	0	5336	40825
196	0	401	0	3519	41386
157	0	0	9	3362	46582
18	0	511	0	1615	43911
0	0	0	0	3929	34978