560 research outputs found

    Anthropomorphizing brands: The role of attributed brand traits in interactive CSR communication and consumer online endorsements

    Get PDF
    Consumers tend to relate to brands in similar ways as they relate to individuals and groups. However, relatively little is known about the attribution of human traits to brands in online contexts. The current research focused on the role of attributed brand traits in interactive corporate social responsibility (CSR) communication and positive electronic word‐of‐mouth intentions. Results of an online survey (N = 174) revealed that higher levels of perceived interactivity were associated with stronger attributions of morality, sociability, and competence traits to brands. Yet only attributed brand morality was associated with consumers' willingness to endorse the brand and its CSR message on social networking sites. These findings underline the importance of brands' openness to dialogue regarding the pr

    Rmi1 stimulates decatenation of double Holliday junctions during dissolution by Sgs1-Top3

    Get PDF
    double Holliday junction (dHJ) is a central intermediate of homologous recombination that can be processed to yield crossover or non-crossover recombination products. To preserve genomic integrity, cells possess mechanisms to avoid crossing over. We show that Saccharomyces cerevisiae Sgs1 and Top3 proteins are sufficient to migrate and disentangle a dHJ to produce exclusively non-crossover recombination products, in a reaction termed "dissolution." We show that Rmi1 stimulates dHJ dissolution at low Sgs1-Top3 protein concentrations, although it has no effect on the initial rate of Holliday junction (HJ) migration. Rmi1 serves to stimulate DNA decatenation, removing the last linkages between the repaired and template DNA molecules. Dissolution of a dHJ is a highly efficient and concerted alternative to nucleolytic resolution that prevents crossing over of chromosomes during recombinational DNA repair in mitotic cells and thereby contributes to genomic integrity

    Sensor characterization for multisensor odor-discrimination system

    Full text link
    In recent years, with the advent of new and cheaper sensors, the use of olfactory systems in homes, industries, and hospitals has a new start. Multisensor systems can improve the ability to distinguish between complex mixtures of volatile substances. To develop multisensor systems that are accurate and reliable, it is important to take into account the anomalies that may arise because of electronic instabilities, types of sensors, and air flow. In this approach, 32 metal oxide semiconductor sensors of 7 different types and operating at different temperatures have been used to develop a multisensor olfactory system. Each type of sensor has been characterized to select the most suitable temperature combinations. In addition, a prechamber has been designed to ensure a good air flow from the sample to the sensing area. The multisensor system has been tested with good results to perform multidimensional information detection of two fruits, based on obtaining sensor matrix data, extracting three features parameters from each sensor curve and using these parameters as the input to a pattern recognition system. (C) 2012 Elsevier B.V. All rights reserved.Cueto Belchí, AD.; Rothpfeffer, N.; Pelegrí Sebastiá, J.; Chilo, J.; García Rodríguez, D.; Sogorb Devesa, TC. (2013). Sensor characterization for multisensor odor-discrimination system. Sensors and Actuators A: Physical. 191:68-72. doi:10.1016/j.sna.2012.11.039S687219

    Ambient levels of volatile organic compounds in the vicinity of petrochemical industrial area of Yokohama, Japan

    Get PDF
    Urban ambient air concentrations of 39 aromatic (including benzene, toluene, and xylenes) and aliphatic volatile organic compounds (VOCs) were measured in Yokohama city, Japan. Yokohama city was selected as a case study to assess the amount of VOC released from Industrial area to characterize the ambient air quality with respect to VOC as well as to know the impact of petrochemical storage facilities on local air quality. For this purpose, ambient air samples were collected (from June 2007 to November 2008) at six selected locations which are designated as industrial, residential, or commercial areas. To find out the diurnal variations of VOC, hourly nighttime sampling was carried out for three nights at one of the industrial locations (Shiohama). Samples were analyzed using gas chromatographic system (GC-FID). Results show strong variation between day and nighttime concentrations and among the seasons. Aliphatic fractions were most abundant, suggesting petrochemical storage facilities as the major source of atmospheric hydrocarbons. High concentrations of benzene, toluene, ethyl benzene, and xylene (BTEX) were observed at industrial locations. BTEX showed strong diurnal variation which is attributed to change in meteorology. During our campaign, low ambient VOC concentrations were observed at the residential site

    Targeting Lactate Dehydrogenase-A Inhibits Tumorigenesis and Tumor Progression in Mouse Models of Lung Cancer and Impacts Tumor-Initiating Cells

    Get PDF
    The lactate dehydrogenase-A (LDH-A) enzyme catalyzes the interconversion of pyruvate and lactate, is upregulated in human cancers, and is associated with aggressive tumor outcomes. Here we use an inducible murine model and demonstrate that inactivation of LDH-A in mouse models of NSCLC driven by oncogenic K-RAS or EGFR leads to decreased tumorigenesis and disease regression in established tumors. We also show that abrogation of LDH-A results in reprogramming of pyruvate metabolism, with decreased lactic fermentation in vitro, in vivo, and ex vivo. This was accompanied by reactivation of mitochondrial function in vitro, but not in vivo or ex vivo. Finally, using a specific small molecule LDH-A inhibitor, we demonstrated that LDH-A is essential for cancer-initiating cell survival and proliferation. Thus, LDH-A can be a viable therapeutic target for NSCLC, including cancer stem cell-dependent drug-resistant tumors

    Evaluation of the modified Pittsburgh classification for predicting the disease-free survival outcome of squamous cell carcinoma of the external auditory canal

    Get PDF
    Background: Squamous cell carcinoma (SCC) of the external auditory canal (EAC) is a rare disease, which is commonly classified with the modified Pittsburgh classification. Our aim was to evaluate the predictive performance of this classification in relation to disease-free survival (DFS). Methods: We examined retrospective data from a nationwide Dutch cohort study including patients with primary EAC SCC. These data were combined with individual patient data from the literature. Using the combined data, the predictive performances were calculated using the c-index. Results: A total of 381 patients were included, 294 for clinical and 281 for the pathological classification analyses. The c-indices of the clinical and the pathological modified Pittsburgh classification predicting DFS were 0.725 (0.668-0.782) and 0.729 (0.672-0.786), respectively. Conclusion: The predictive performance of the modified Pittsburgh classification system as such appears to be acceptable to predict the DFS of EAC SCC. Other factors need to be added to a future model to improve the predicted performance
    corecore