

Development of a 40 T Compact Hybrid Magnet

22

著者	渡辺和雄
journal or	IEEE Transactions on Magnetics
publication title	
volume	32
number	4
page range	2470-2473
year	1996
URL	http://hdl.handle.net/10097/47210
-	

doi: 10.1109/20.511373

Development of a 40 T Compact Hybrid Magnet

K. Watanabe, S. Awaji, N. Kobayashi, S. Miura, T. Fukase, M. Motokawa, M. Urata*, K. Koyanagi*, M. Tezuka*, and S. Hanai*

Institute for Materials Research, Tohoku University, Sendai 980-77, Japan *Toshiba Corp., Kawasaki 210, Japan

Abstract — A 40 T compact hybrid magnet consisting of a 16 T outer superconducting magnet and a 24 T inner resistive magnet is conceptually designed. A highly strengthened superconducting magnet with a 360 mm room temperature bore can be made using newly developed (Nb,Ti)₃Sn wires with Cu-Nb or Cu-Al₂O₃ reinforcing stabilizer, and as a result the coil weight is outstandingly reduced by about 70 %. A poly-Bitter resistive magnet which generates 24 T in a 14 mm room temperature bore is realized consuming 8 MW power.

I. INTRODUCTION

The projects of hybrid magnets with flux densities in excess of 40 T have been recently performed in the world [1-3]. High field superconducting magnets inevitably require employing Nb₃Sn superconducting wires. In a wide bore superconducting magnet for a hybrid magnet, the electromagnetic force at the windings increases with the strength of a field. The superconducting properties of Nb₃Sn wires have a weak point for applied stress, and the critical current of Nb₃Sn wires without reinforcement degrades easily under the large stress. Practically reinforced superconducting wires have been realized by means of an external reinforcement. Heat-treated and fully reacted Nb₂Sn wires are surrounded with housings of cold-worked hard Cu [4]. Since Cu stabilizer with a large cross section must be utilized as housings to overcome the huge stress, the average current density of the coil is extremely reduced. As a result, high field superconducting magnets with a wide bore tend to become larger and larger. A superconducting magnet with heavy weight and large size needs the inconveniently large scale cryostat and refrigerator system. From the aspects of manufacturing and operating costs, such a large scale superconducting magnet system is undesired to widely promote the advanced research in high fields.

In order to reduce the coil weight and size, a very compact superconducting magnet has to be developed employing the highly strengthened $(Nb,Ti)_3Sn$ superconducting wires with the minimized volume. This paper describes the project of a 40 T compact hybrid magnet which consists of a remarkably light 16 T superconducting magnet using $(Nb,Ti)_3Sn$ superconducting wires reinforced with Cu-Nb or Cu-Al₂O₃ and a

Manuscript received June 13, 1995.

24 T water-cooled resistive magnet with an 8 MW power supply.

II. DEVELOPMENT OF $(Nb,Ti)_3$ Sn Wires With Reinforcing Stabilizer

Figure 1 shows cross sectional views of newly developed multifilamentary $(Nb,Ti)_3Sn$ wires with Cu-Nb or Cu-Al₂O₃ reinforcing stabilizer. The former $(Nb,Ti)_3Sn$ wire reinforced

Fig 1. Internally reinforced superconducting wires. (a) Bronze processed multifilamentary (Nb,Ti)₃Sn wire with Cu-Nb reinforcing stabilizer and (b) Nb-tube processed multifilamentary (Nb,Ti)₃Sn wire withCu-Al₂O₃reinforcing stabilizer.

0018-9464/96\$05.00 © 1996 IEEE

Fig. 2 Magnetoresistance as a function of magnetic field at 4.2 K. Oxygen free copper (OFC) and Al_2O_3 dispersion copper (Cu- Al_2O_3) were annealed at 720 °C for 50 hours, and Cu-Nb conposite at 670 °C for 200 hours.

with Cu-Nb composes of the wire parameters : 0.8 mm outer diameter, 3.4 µm filament diameter, 5587 filaments, and Cu/Cu-Nb/non-Cu ratio of 0.14/0.67/1. The latter wire with Cu-Al₂O₂ has a 1.0 mm outer diameter, 52 µm filament diameter, 132 filaments, and Cu/Cu-Al₂O₃/non-Cu ratio of 0.94/0.86/1. It is important to know the resistivity of the reinforcing materials used instead of Cu stabilizer. Figure 2 shows the magnetoresistances of the stabilizer materials measured in high fields at 4.2 K after the heat treatment. Cu-14.6 at.% Nb and Cu-0.4 at.%Al₂O₂ composites exhibit the low magnetoresistivity of 0.15-0.17 $\mu\Omega$ cm at 16 T and 4.2 K, which is merely a factor of about two higher than that of Cu stabilizer. Therefore, these reinforcing materials are expected to play the role of a stabilizer. Bronze processed multifilamentary (Nb,Ti)₃Sn wires stabilized with Cu-Nb reinforcement, Cu-Nb/(Nb,Ti)₃Sn [5], and Nb-tube processed multifilamentary (Nb,Ti)₃Sn wires stabilized with Cu-Al₂O₃ reinforcement, Cu-Al₂O₃/(Nb,Ti)₃Sn [6], have been successfully demonstrated. The heat-treatments to form A15 compounds were carried out at 670°C for 200 hours in Cu-Nb/(Nb,Ti)₂Sn and at 720 °C for 50 hours in Cu-Al₂O₃ /(Nb,Ti)₂Sn. Both reinforcing (Nb,Ti)₂Sn superconducting wires give characteristic points such as mechanically strong properties and electrically good conductivity even after heattreatment at about 700°C. From the stress-strain curve measured at 4.2 K, it was found that the yield stress defined as the 0.2 % proof stress is 310 MPa at 4.2 K for Cu-

Fig. 3 Comparison of non-Cu J_c at 4.2 K in high fields for Cu-Al₂O₃/(Nb,Ti)₃Sn and Cu-Nb/(Nb,Ti)₃Sn.

Nb/(Nb,Ti)₃Sn [5]. On the other hand, the yield stress for Cu-Al₂O₃/(Nb,Ti)₃Sn is more than 300 MPa at room temperature [6]. When these value are compared with that of ordinary (Nb,Ti)₃Sn wires without reinforcement, it is clear that the strength of such reinforced (Nb,Ti)₃Sn wires is significantly improved and is twice as high as that of ordinary ones.

Figure 3 exhibits the critical current densities in a non-Cu area section (non-Cu J_c) in high fields at 4.2 K for the highly strengthened multifilamentary (Nb,Ti)₃Sn wires. The reinforced (Nb,Ti)₂Sn wires usually indicate the slightly lower J_v values than the ordinary wires without reinforcement, because of larger residual strain. In an applied strain state due to the Lorentz force, the critical current density becomes closer to the J_o properties in a strain free state, since the residual compressive strain decreases with increasing the electromagnetic tensile strain axially applied to the wire. For Cu-Nb/(Nb,Ti)₂Sn wires, the residual strain at 4.2 K was measured to be about $\varepsilon \approx 0.5$ %. The non-Cu J_c values obtained for the bronze processed Cu-Nb/(Nb,Ti)₃Sn wire show the good performance even in 0.5 % prestrain state, and in addition, for the Cu-Al₂O₃/(Nb,Ti)₃Sn wire fabricated by Nb-tube process the non-Cu J_c is splendidly high. From these results, both Cu-Nb/(Nb,Ti)₃Sn and Cu-Al₂O₃/(Nb,Ti)₃Sn wires are considered to have an enough potential for the highly strengthened superconducting magnets.

III. HIGHLY STRENGTHENED SUPERCONDUCTING MAGNET For 40 T Compact Hybrid Magnet

The highly strengthened $(Nb,Ti)_3Sn$ wires mentioned above enable us to design a very compact high field superconducting magnet with a wide bore for a 40 T hybrid magnet. In order to perform an outstanding design of a new superconducting magnet, we adopt the advanced conditions as follows :

- 1) A superconducting magnet generates 16 T in a center of a 360 mm room temperature bore.
- 2) The superconducting magnet may quench, if the insert resistive magnet fails.
- 3) The coil weight is as light as about 3000 kg, and a Philips PGH105 cryogenerator with two refrigeration powers of 50 W at 20 K and 115 W at 80 K is conveniently available for precooling the coil from room temperature and for radiation shielding.
- 4) The mechanical properties are extended to be less than 250 MPa for a tangential tensile stress of the coil and less than 100 MPa for a transverse stress of the coil.

The optimization calculation of a highly strengthened superconducting magnet which will be made using epoxy impregnation techniques is still being performed. The conceptual design parameters are presently listed in Table 1. This magnet consists of four grades coils which are designated S1, S2, S3, and T1 from the inside out. The S coils are wound using highly strengthened multifilamentary (Nb,Ti)₃Sn superconducting wires, and the T coil employs a conventional NbTi superconducting wire. When the size of conductors is adopted to be 7.6×3.7 , 7.6×3.7 , 7.0×3.4 mm² for S1, S2, and S3 coils, respectiely, the critical current as a function of magnetic field is obtained for Cu-Al₂O₃/(Nb,Ti)₃Sn wires, for instance. Figure 4 shows the load lines for S1, S2, and S3 coils of the 16 T superconducting magnet, and the designed operation current corresponds to 90.4 %, 84.2%, and 80.9 %

Table 1. Coil parameters of a 16 T compact superconducting magnet with a 360 mm room temperature bore for a 40 T hybrid magnet.

coil grading	S 1	\$2	S 3	T1
inner diameter [mm]	420	498	628	806
outer diameter [mm]	498	608	786	936
coil height [mm]	680	680	680	680
operation current [A]	1640	1640	1640	1640
central field [T]	16.0	_		_
maximum field [T]	17.0	14.8	11.8	6.6
effective current density	53.8	53.8	63.0	131
[A/mm ²]				
hoop stress [MPa]	200	200	200	100
conductor length [m]	1260	2120	4590	9680
conductor size [mm×mm] 7	7.6×3.7	7.6×3.7	7.0×3.4	4.8×2.3
stabilizer / non Cu ratio	1.5	2.6	7.2	1.2
total conductor weight [kg]	2880	—	_	—

Fig. 4. I_c -vs-B properties for Cu-Al₂O₃/(Nb,Ti)₃Sn superconducting wires, and the load lines of a 16 T superconducting magnet.

I_c on the load line, respectively. The innermost coil experiences the maximum field of 17 T at 4.2 K at the windings. As a safety margin, the hoop stress considering the sum of the coil body forces is 200 MPa. This stress value gives a lower strain value than that of the strain free state of 0.5 % in highly strengthened (Nb,Ti)₃Sn superconducting wires. It is worthy of note that the total conductor weight employed in this design is less than about 2,900 kg. This results in the large reduction of magnet size and weight. According to the conventional design using (Nb,Ti)₃Sn wires with external reinforcing housings, the total conductor weight reaches more than 10,000 kg. Therefore, an extremely compact high field superconducting magnet with a wide bore whose weight is about 1/3 in comparison with the ordinarily made magnet can be realized.

VI. 24 T POLI-BITTER MAGNET WITH 8 MW POWER SUPPLY FOR 40 T COMPACT HYBRID MAGNET

Strengthened materials such as Cu-0.9 at% Cr (yield strength of 400 MPa and electrical conductivity of 90 % IACS) and Cu-0.4 at.% Al_2O_3 (460 MPa and 89 % IACS) have been used for water-cooled resistive magnets. Since high field resistive magnets require more highly strengthened materials, the more largely equipped power supply system is needed. The resistivity of a reinforced material increases with increasing strength. That is the reason why the large power supply systems of 15-25 MW have been installed for

	inner dia. [mm]	outer dia [mm]	coil height [mm]	operation current [kA]	power [MW]	generated field [T]	max. hoop stress [MPa] t	max. disk emperature [°C]
1	220	320	250	23	2.78	4.21	416	95.3
2	142	217	155	23	2.02	4.16	478	52.4
3	72	137	145	23	1.84	6.76	513	58.5
4	20	68.0	145	23	1.37	8.46	529	76.6
Тс	otal			23 kA	8.0 MW	24 T		

Table 2. Coil parameters of a 24 T poly-Bitter magnet with a 14 mm room temperature bore for a 40 T hybrid magnet.

resistive magnets in new high field facilities [1-3]. Recently developed Cu-50 at.% Ag materials with yield strength of 700 MPa and electrical conductivity of 85 %IACS [7] attract strong attentions as a suitable material of a resistive magnet. We concentrate on this Cu-50at.%Ag with extremely high yield strength to introduce a 24 T resistive magnet with 8 MW power supply for a 40 T compact hybrid magnet. A poly-Bitter type resistive magnet is designed under the conditions of the DC power of 8 MW (23 kA and 350 V) and the cooling ability of 350 m³/h which have already been equipped at High Field Laboratory for Superconducting Materials, Tohoku University [8]. Table 2 presents the typically designed poly-Bitter resistive magnet which generates 24 T in a 14 mm room temperature bore [9]. The objective of a 40 T compact hybrid magnet is to provide both electrical resistivity and magnetization measurements, in order to explore the physical properties in high fields for thin films and single crystals, for instance. These research will require the experimental cold bore of 8 mm at least (a room temperature bore of 14 mm). These results obtained for the poly-Bitter resistive magnet encourage us to challenge for highly strengthened magnet design, and lead to the realization of a 40 T compact hybrid magnet.

VII. CONCLUSION

Newly developed multifilamentary $(Nb,Ti)_3Sn$ superconducting wires with reinforcing stabilizer such as Cu-Nb or Cu-Al₂O₃ enable us to design a highly strengthened superconducting magnet. A high field and wide bore superconducting magnet without external housing reinforcement can be made by adopting an epoxy impregnation technique, and as a result, a very compact superconducting magnet with the large over-all current density is realized. In a conceptual design of a 40 T hybrid magnet, the weight of a 16 T outer superconducting magnet with a 360 mm room temperature bore is reduced to about 1/3 in comparison with the ordinarily made magnet. Moreover, a 24 T inner resistive magnet with a 14 mm room temperature bore is designable using a poly-Bitter concept with an 8 MW power supply of 23 kA and 350 V.

ACKNOWLEDGMENTS

We would like to thank Professors K. Katagiri and K. Noto of Iwate University for useful discussions on highly strengthened materials. Cu-Nb/(Nb,Ti)₃Sn wires were prepared by Fujikura Ltd.

REFERENCES

- G. Aubert, H.W.H.M. Jongbloets, W. Joss, J.C. Picoche, A. Plante, P. Rub, and J.C. Vallier, IEEE Trans. Magn. 30, 1541 (1994).
- [2] M.D. Bird, S. Bole, Y.M. Eyssa, B.J. Gao, H. Zhang, and H.J. Schneider-Muntau, IEEE Trans. Magn. 30, 2192 (1994).
- [3] K. Inoue, T. Kiyoshi, T. Asano, K. Itoh, T. Takeuchi, H. Wada, and H. Maeda, Physica B164, 21 (1990).
- [4] K. Noto, K. Watanabe, A. Hoshi, Y. Muto, J. Nagamura, O. Osaki, Y. Sumiyoshi, T. Hamajima, T. Sato, and T. Murai, Sci. Rep. RITU A33, 238 (1986).
- [5] K. Watanabe, S. Awaji, K. Katagiri, K. Noto, K. Goto, M. Sugimoto, T. Saito, and O. Kohno, IEEE Trans. Magn. 30, 1871 (1994).
- [6] S. Murase, S. Nakayama, K. Shimamura, M. Tesuka, N. Shiga, K. Watanabe, and N. Kobayashi, a preprint of the 14th Int. Conf. on Magnet Technology MT-14, Tampere, 1995.
- [7] K. Inoue, Y. Sakai, T. Asano, and H. Maeda, Cryogenic Engineering 30, 163 (1995), in Japanese.
- [8] Y. Nakagawa, K. Noto, A. Hoshi, S. Miura, K. Watanabe, and Y. Muto, J. de Phys. 54C1, 23 (1984).
- [9] S. Miura, K. Watanabe, S. Awaji, M. Motokawa, N. Kobayashi, and T. Fukase, a preprint of the 14th Int. Conf. on Magnet Technology MT-14, Tampere, 1995.