154 research outputs found
Recommended from our members
Micromobility evolution and expansion: Understanding how docked and dockless bikesharing models complement and compete – A case study of San Francisco
Shared micromobility – the shared use of bicycles, scooters, or other low-speed modes – is an innovative transportation strategy growing across the United States that includes various service models such as docked, dockless, and e-bike service models. This research focuses on understanding how docked bikesharing and dockless e-bikesharing models complement and compete with respect to user travel behaviors. To inform our analysis, we used two datasets from February 2018 of Ford GoBike (docked) and JUMP (dockless electric) bikesharing trips in San Francisco. We employed three methodological approaches: 1) travel behavior analysis, 2) discrete choice analysis with a destination choice model, and 3) geospatial suitability analysis based on the Spatial Temporal Economic Physiological Social (STEPS) to Transportation Equity framework. We found that dockless e-bikesharing trips were longer in distance and duration than docked trips. The average JUMP trip was about a third longer in distance and about twice as long in duration than the average GoBike trip. JUMP users were far less sensitive to estimated total elevation gain than were GoBike users, making trips with total elevation gain about three times larger than those of GoBike users, on average. The JUMP system achieved greater usage rates than GoBike, with 0.8 more daily trips per bike and 2.3 more miles traveled on each bike per day, on average. The destination choice model results suggest that JUMP users traveled to lower-density destinations, and GoBike users were largely traveling to dense employment areas. Bike rack density was a significant positive factor for JUMP users. The location of GoBike docking stations may attract users and/or be well-placed to the destination preferences of users. The STEPS-based bikeability analysis revealed opportunities for the expansion of both bikesharing systems in areas of the city where high-job density and bike facility availability converge with older resident populations
A randomized phase II study of weekly nab-paclitaxel plus gemcitabine or simplified LV5FU2 as first-line therapy in patients with metastatic pancreatic cancer: the AFUGEM GERCOR trial
International audienceBackground : Metastatic pancreatic adenocarcinoma (PAC) prognosis remains dismal and gemcitabine monotherapy has been the standard treatment over the last decade. Currently, two first-line regimens are used in this setting: FOLFIRINOX and nab-paclitaxel plus gemcitabine. Increasing translational data on the predictive value of hENT1 for determining gemcitabine efficacy suggest that a non-gemcitabine-based regimen is favored in about 60 % of patients with PAC due to high resistance of PAC to this cytotoxic drug. This study aims to evaluate the efficacy of weekly nab-paclitaxel combined with gemcitabine or a simplified (s) LV5FU2 regimen in patients with previously untreated metastatic PAC.Methods/design : AFUGEM is a two-stage, open-label, randomized, multicenter, phase II trial. Patients with PAC who meet the inclusion criteria and provide written informed consent will be randomized in a 1:2 ratio to either nab-paclitaxel (125 mg/m 2 ) plus gemcitabine (1000 mg/m 2 ) given on days 1, 8, and 15 every 28 days or nab-paclitaxel (125 mg/m 2 ) plus sLV5FU2 (leucovorin 400 mg/m 2 followed by bolus 400 mg/m 2 5-fluorouracil and by 5-fluorouracil 2400 mg/m 2 as an 46-h intravenous infusion) given on days 1 and 15 every 28 days. A total of 114 patients will be randomized to one of the treatment arms. The primary endpoint is progression-free survival at 4 months. Secondary outcomes are rate and duration of response, disease control, overall survival, safety, and quality of life. Potential biomarkers of gemcitabine (hENT1, dCK) and 5-fluorouracil (TS) efficacy will be assessed.Discussion : The AFUGEM trial is designed to provide valuable information regarding efficacy and tolerability of nab-paclitaxel plus gemcitabine and nab-paclitaxel plus sLV5FU2 regimens. Identification of potential predictive biomarkers of gemcitabine and 5-fluorouracil is likely to drive therapeutic decisions in patients with metastatic PAC
Disseminated and circulating tumor cells in gastrointestinal oncology.
International audienceCirculating (CTCs) and disseminated tumor cells (DTCs) are two different steps in the metastatic process. Several recent techniques have allowed detection of these cells in patients, and have generated many results using different isolation techniques in small cohorts. Herein, we review the detection results and their clinical consequence in esophageal, gastric, pancreatic, colorectal, and liver carcinomas, and discuss their possible applications as new biomarkers
Gains and losses of coral skeletal porosity changes with ocean acidification acclimation
Ocean acidi\ufb01cation is predicted to impact ecosystems reliant on calcifying organisms, potentially reducing the socioeconomic bene\ufb01ts these habitats provide. Here we investigate the acclimation potential of stony corals living along a pH gradient caused by a Mediterranean CO2 vent that serves as a natural long-term experimental setting. We show that in response to reduced skeletal mineralization at lower pH, corals increase their skeletal macroporosity (features >10 micrometers) in order to maintain constant linear extension rate, an important criterion for reproductive output. At the nanoscale, the coral skeleton\u2019s structural features are not
altered. However, higher skeletal porosity, and reduced bulk density and stiffness may contribute to reduce population density and increase damage susceptibility under low pH conditions. Based on these observations, the almost universally employed measure of coral biomineralization, the rate of linear extension, might not be a reliable metric for assessing coral health and resilience in a warming and acidifying ocean
The Staphylococcus aureus Protein Sbi Acts as a Complement Inhibitor and Forms a Tripartite Complex with Host Complement Factor H and C3b
The Gram-positive bacterium Staphylococcus aureus, similar to other pathogens, binds human complement regulators Factor H and Factor H related protein 1 (FHR-1) from human serum. Here we identify the secreted protein Sbi (Staphylococcus aureus binder of IgG) as a ligand that interacts with Factor H by a—to our knowledge—new type of interaction. Factor H binds to Sbi in combination with C3b or C3d, and forms tripartite Sbi∶C3∶Factor H complexes. Apparently, the type of C3 influences the stability of the complex; surface plasmon resonance studies revealed a higher stability of C3d complexed to Sbi, as compared to C3b or C3. As part of this tripartite complex, Factor H is functionally active and displays complement regulatory activity. Sbi, by recruiting Factor H and C3b, acts as a potent complement inhibitor, and inhibits alternative pathway-mediated lyses of rabbit erythrocytes by human serum and sera of other species. Thus, Sbi is a multifunctional bacterial protein, which binds host complement components Factor H and C3 as well as IgG and β2-glycoprotein I and interferes with innate immune recognition
Clinical practice guidelines for BRCA1 and BRCA2 genetic testing
BRCA1 and BRCA2 gene pathogenic variants account for most hereditary breast cancer and are increasingly used to determine eligibility for PARP inhibitor (PARPi) therapy of BRCA-related cancer. Because issues of BRCA testing in clinical practice now overlap with both preventive and therapeutic management, updated and comprehensive practice guidelines for BRCA genotyping are needed. The integrative recommendations for BRCA testing presented here aim to (1) identify individuals who may benefit from genetic counselling and risk-reducing strategies; (2) update germline and tumour-testing indications for PARPi-approved therapies; (3) provide testing recommendations for personalised management of early and metastatic breast cancer; and (4) address the issues of rapid process and tumour analysis. An international group of experts, including geneticists, medical and surgical oncologists, pathologists, ethicists and patient representatives, was commissioned by the French Society of Predictive and Personalised Medicine (SFMPP). The group followed a methodology based on specific formal guidelines development, including (1) evaluating the likelihood of BRCAm from a combined systematic review of the literature, risk assessment models and expert quotations, and (2) therapeutic values of BRCAm status for PARPi therapy in BRCA-related cancer and for management of early and advanced breast cancer. These international guidelines may help clinicians comprehensively update and standardise BRCA testing practices
XLF and APLF bind Ku80 at two remote sites to ensure DNA repair by non-homologous end joining
International audienceThe Ku70-Ku80 (Ku) heterodimer binds rapidly and tightly to the ends of DNA double-strand breaks and recruits factors of the non-homologous end-joining (NHEJ) repair pathway through molecular interactions that remain unclear. We have determined crystal structures of the Ku-binding motifs (KBM) of the NHEJ proteins APLF (A-KBM) and XLF (X-KBM) bound to a Ku-DNA complex. The two KBM motifs bind remote sites of the Ku80 alpha/beta domain. The X-KBM occupies an internal pocket formed by an unprecedented large outward rotation of the Ku80 alpha/beta domain. We observe independent recruitment of the APLF-interacting protein XRCC4 and of XLF to laser-irradiated sites via binding of A- and X-KBMs, respectively, to Ku80. Finally, we show that mutation of the X-KBM and A-KBM binding sites in Ku80 compromises both the efficiency and accuracy of end joining and cellular radiosensitivity. A- and X-KBMs may represent two initial anchor points to build the intricate interaction network required for NHEJ
The Science Performance of JWST as Characterized in Commissioning
This paper characterizes the actual science performance of the James Webb
Space Telescope (JWST), as determined from the six month commissioning period.
We summarize the performance of the spacecraft, telescope, science instruments,
and ground system, with an emphasis on differences from pre-launch
expectations. Commissioning has made clear that JWST is fully capable of
achieving the discoveries for which it was built. Moreover, almost across the
board, the science performance of JWST is better than expected; in most cases,
JWST will go deeper faster than expected. The telescope and instrument suite
have demonstrated the sensitivity, stability, image quality, and spectral range
that are necessary to transform our understanding of the cosmos through
observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures;
https://iopscience.iop.org/article/10.1088/1538-3873/acb29
The James Webb Space Telescope Mission
Twenty-six years ago a small committee report, building on earlier studies,
expounded a compelling and poetic vision for the future of astronomy, calling
for an infrared-optimized space telescope with an aperture of at least .
With the support of their governments in the US, Europe, and Canada, 20,000
people realized that vision as the James Webb Space Telescope. A
generation of astronomers will celebrate their accomplishments for the life of
the mission, potentially as long as 20 years, and beyond. This report and the
scientific discoveries that follow are extended thank-you notes to the 20,000
team members. The telescope is working perfectly, with much better image
quality than expected. In this and accompanying papers, we give a brief
history, describe the observatory, outline its objectives and current observing
program, and discuss the inventions and people who made it possible. We cite
detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space
Telescope Overview, 29 pages, 4 figure
- …