1,120 research outputs found

    The relative importance of electron-electron interactions compared to disorder in the two-dimensional "metallic" state

    Full text link
    The effect of substrate bias and surface gate voltage on the low temperature resistivity of a Si-MOSFET is studied for electron concentrations where the resistivity increases with increasing temperature. This technique offers two degrees of freedom for controlling the electron concentration and the device mobility, thereby providing a means to evaluate the relative importance of electron-electron interactions and disorder in this so-called ``metallic'' regime. For temperatures well below the Fermi temperature, the data obey a scaling law where the disorder parameter (kFlk_{\rm{F}}l), and not the concentration, appears explicitly. This suggests that interactions, although present, do not alter the Fermi-liquid properties of the system fundamentally. Furthermore, this experimental observation is reproduced in results of calculations based on temperature-dependent screening, in the context of Drude-Boltzmann theory.Comment: 5 pages, 6 figure

    Evidence for Shape Co-existence at medium spin in 76Rb

    Full text link
    Four previously known rotational bands in 76Rb have been extended to moderate spins using the Gammasphere and Microball gamma ray and charged particle detector arrays and the 40Ca(40Ca,3pn) reaction at a beam energy of 165 MeV. The properties of two of the negative-parity bands can only readily be interpreted in terms of the highly successful Cranked Nilsson-Strutinsky model calculations if they have the same configuration in terms of the number of g9/2 particles, but they result from different nuclear shapes (one near-oblate and the other near-prolate). These data appear to constitute a unique example of shape co-existing structures at medium spins.Comment: Accepted for publication in Physics Letters

    An approach for normalization and quality control for NanoString RNA expression data

    Get PDF
    The NanoString RNA counting assay for formalin-fixed paraffin embedded samples is unique in its sensitivity, technical reproducibility and robustness for analysis of clinical and archival samples. While commercial normalization methods are provided by NanoString, they are not optimal for all settings, particularly when samples exhibit strong technical or biological variation or where housekeeping genes have variable performance across the cohort. Here, we develop and evaluate a more comprehensive normalization procedure for NanoString data with steps for quality control, selection of housekeeping targets, normalization and iterative data visualization and biological validation. The approach was evaluated using a large cohort (N= 1649$) from the Carolina Breast Cancer Study, two cohorts of moderate sample size (N=359 and 130) and a small published dataset (N=12). The iterative process developed here eliminates technical variation (e.g. from different study phases or sites) more reliably than the three other methods, including NanoString's commercial package, without diminishing biological variation, especially in long-term longitudinal multiphase or multisite cohorts. We also find that probe sets validated for nCounter, such as the PAM50 gene signature, are impervious to batch issues. This work emphasizes that systematic quality control, normalization and visualization of NanoString nCounter data are an imperative component of study design that influences results in downstream analyses

    Double-Layer Systems at Zero Magnetic Field

    Full text link
    We investigate theoretically the effects of intralayer and interlayer exchange in biased double-layer electron and hole systems, in the absence of a magnetic field. We use a variational Hartree-Fock-like approximation to analyze the effects of layer separation, layer density, tunneling, and applied gate voltages on the layer densities and on interlayer phase coherence. In agreement with earlier work, we find that for very small layer separations and low layer densities, an interlayer-correlated ground state possessing spontaneous interlayer coherence (SILC) is obtained, even in the absence of interlayer tunneling. In contrast to earlier work, we find that as a function of total density, there exist four, rather than three, distinct noncrystalline phases for balanced double-layer systems without interlayer tunneling. The newly identified phase exists for a narrow range of densities and has three components and slightly unequal layer densities, with one layer being spin polarized, and the other unpolarized. An additional two-component phase is also possible in the presence of sufficiently strong bias or tunneling. The lowest-density SILC phase is the fully spin- and pseudospin-polarized ``one-component'' phase discussed by Zheng {\it et al.} [Phys. Rev. B {\bf 55}, 4506 (1997)]. We argue that this phase will produce a finite interlayer Coulomb drag at zero temperature due to the SILC. We calculate the particle densities in each layer as a function of the gate voltage and total particle density, and find that interlayer exchange can reduce or prevent abrupt transfers of charge between the two layers. We also calculate the effect of interlayer exchange on the interlayer capacitance.Comment: 35 pages, 19 figures included. To appear in PR

    The globalization of naval provisioning: ancient DNA and stable isotope analyses of stored cod from the wreck of the Mary Rose, AD 1545.

    Get PDF
    A comparison of ancient DNA (single-nucleotide polymorphisms) and carbon and nitrogen stable isotope evidence suggests that stored cod provisions recovered from the wreck of the Tudor warship Mary Rose, which sank in the Solent, southern England, in 1545, had been caught in northern and transatlantic waters such as the northern North Sea and the fishing grounds of Iceland and Newfoundland. This discovery, underpinned by control data from archaeological samples of cod bones from potential source regions, illuminates the role of naval provisioning in the early development of extensive sea fisheries, with their long-term economic and ecological impacts

    Solar Wind Turbulence and the Role of Ion Instabilities

    Get PDF
    International audienc

    Short communication: Dried blood spots stored at room temperature should not be used for hiv incidence testing

    Get PDF
    The limiting antigen (LAg)-avidity assay is a serologic assay used for cross-sectional HIV incidence testing. We compared the results obtained with the LAg-avidity assay using dried blood spot (DBS) samples stored at room temperature (18°C-25°C) or stored frozen at -80°C with results obtained from matched plasma samples. Matched DBS and plasma samples (306 paired samples) were collected in the HIV Prevention Trials Network (HPTN) 068 trial in South Africa (2012-2014). The DBS were stored at room temperature before testing. Matched DBS and plasma samples (100 paired samples) from the Consortium for the Evaluation and Performance of HIV Incidence Assays (CEPHIA) were collected in 2016 and were stored at -80°C. All DBS testing was performed in 2017. Differences in normalized optical density (ODn) were compared between matched DBS and plasma samples. For DBS samples stored at room temperature (HPTN 068), the average difference in ODn values for plasma versus DBS was 1.49 (95% confidence intervals [CI]: 1.36-1.62). In contrast, when DBS samples were stored at -80°C (CEPHIA), the average difference in ODn values for plasma versus DBS was -0.22 (95% CI: -0.32 to -0.13). DBS samples stored at room temperature should not be used for cross-sectional HIV incidence testing with the LAg-avidity assay

    Phase transitions above the yrast line in 154Dy

    Get PDF
    Spectra of the E2 quasicontinuum γ rays feeding different spin regions of the 154Dy yrast line have been extracted. These are compared with corresponding theoretical spectra obtained by numerical simulations based on temperature-dependent Hartree-Fock theory, with thermal shape fluctuations. In this manner, different regions of the spin-energy plane can be examined. The results support the predictions of a smeared-out phase transition at high spin above the yrast line

    Model-independent search for CP violation in D0→K−K+π−π+ and D0→π−π+π+π− decays

    Get PDF
    A search for CP violation in the phase-space structures of D0 and View the MathML source decays to the final states K−K+π−π+ and π−π+π+π− is presented. The search is carried out with a data set corresponding to an integrated luminosity of 1.0 fb−1 collected in 2011 by the LHCb experiment in pp collisions at a centre-of-mass energy of 7 TeV. For the K−K+π−π+ final state, the four-body phase space is divided into 32 bins, each bin with approximately 1800 decays. The p-value under the hypothesis of no CP violation is 9.1%, and in no bin is a CP asymmetry greater than 6.5% observed. The phase space of the π−π+π+π− final state is partitioned into 128 bins, each bin with approximately 2500 decays. The p-value under the hypothesis of no CP violation is 41%, and in no bin is a CP asymmetry greater than 5.5% observed. All results are consistent with the hypothesis of no CP violation at the current sensitivity

    Observation of Orbitally Excited B_s Mesons

    Get PDF
    We report the first observation of two narrow resonances consistent with states of orbitally excited (L=1) B_s mesons using 1 fb^{-1} of ppbar collisions at sqrt{s} = 1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. We use two-body decays into K^- and B^+ mesons reconstructed as B^+ \to J/\psi K^+, J/\psi \to \mu^+ \mu^- or B^+ \to \bar{D}^0 \pi^+, \bar{D}^0 \to K^+ \pi^-. We deduce the masses of the two states to be m(B_{s1}) = 5829.4 +- 0.7 MeV/c^2 and m(B_{s2}^*) = 5839.7 +- 0.7 MeV/c^2.Comment: Version accepted and published by Phys. Rev. Let
    corecore