133 research outputs found

    The gamma-ray spectrum of Centaurus A: A high-resolution observation between 70 keV and 8 MeV

    Get PDF
    The NASA/Goddard Space Flight Center Low Energy Gamma ray Spectrometer (LEGS) observed the nearby active nucleus galaxy Centaurus A (NGC 5128) during a balloon flight on 1981 November 19. There is no evidence of a break in the spectrum or of any line features. The 1.6 MeV limit is a factor of 8 lower than the 1974 line flux, indicating that, if the 1974 feature was real, and, if it was narrow, then the line intensity decreased significantly between 1974 and 1981. The lack of observed annihilation radiation from Cen A, combined with the temporal variations that are seen in the X-ray and gamma-ray intensities, constrain the size of the emission region to be between 10 to the 13th power and 5 x 10 to the 17th power cm

    The Accretion Flows and Evolution of Magnetic Cataclysmic Variables

    Full text link
    We have used a model of magnetic accretion to investigate the accretion flows of magnetic cataclysmic variables. Numerical simulations demonstrate that four types of flow are possible: discs, streams, rings and propellers. The fundamental observable determining the accretion flow, for a given mass ratio, is the spin-to-orbital period ratio of the system. If IPs are accreting at their equilibrium spin rates, then for a mass ratio of 0.5, those with Pspin/Porb < 0.1 will be disc-like, those with 0.1 < Pspin/Porb < 0.6 will be stream-like, and those with Pspin/Porb ~ 0.6 will be ring-like. The spin to orbital period ratio at which the systems transition between these flow types increases as the mass ratio of the stellar components decreases. For the first time we present evolutionary tracks of mCVs which allow investigation of how their accretion flow changes with time. As systems evolve to shorter orbital periods and smaller mass ratios, in order to maintain spin equilibrium, their spin-to-orbital period ratio will generally increase. As a result, the relative occurrence of ring-like flows will increase, and the occurrence of disc-like flows will decrease, at short orbital periods. The growing number of systems observed at high spin-to-orbital period ratios with orbital periods below 2h, and the observational evidence for ring-like accretion in EX Hya, are fully consistent with this picture.Comment: Accepted for publication in ApJ. 6 figures - included here at low resolutio

    High and low states of the system AM Herculis

    Full text link
    Context: We investigate the distribution of optically high and low states of the system AM Herculis (AM Her). Aims: We determine the state duty cycles, and their relationships with the mass transfer process and binary orbital evolution of the system. Methods: We make use of the photographic plate archive of the Harvard College Observatory between 1890 and 1953 and visual observations collected by the American Association of Variable Star Observers between 1978 and 2005. We determine the statistical probability of the two states, their distribution and recurrence behaviors. Results: We find that the fractional high state duty cycle of the system AM Her is 63%. The data show no preference of timescales on which high or low states occur. However, there appears to be a pattern of long and short duty cycle alternation, suggesting that the state transitions retain memories. We assess models for the high/low states for polars (AM Her type systems). We propose that the white-dwarf magnetic field plays a key role in regulating the mass transfer rate and hence the high/low brightness states, due to variations in the magnetic-field configuration in the system.Comment: 8 pages, 5 figures, accepted for publication in A&

    A 150MG magnetic white dwarf in the cataclysmic variable RX J1554.2+2721

    Full text link
    We report the detection of Zeeman-split Lalpha absorption pi and sigma+ lines in the far-ultraviolet Hubble Space Telescope/Space Telescope Imaging Spectrograph spectrum of the magnetic cataclysmic variable RX J1554.2+2721. Fitting the STIS data with magnetic white dwarf model spectra, we derive a field strength of B~144MG and an effective temperature of 17000K<Teff<23000K. This measurement makes RX J1554.2+2721 only the third cataclysmic variable containing a white dwarf with a field exceeding 100MG. Similar to the other high-field polar AR UMa, RX J1554.2+2721 is often found in a state of feeble mass transfer, which suggests that a considerable number of high-field polars may still remain undiscovered.Comment: 4 pages, accepted for ApJ Letter

    The origin and fate of short-period low-mass black-hole binaries

    Get PDF
    We present results of a population synthesis study for semidetached short orbital period binaries which contain low-mass(<1.5 Msun) donors and black hole (>4 Msun) accretors. Evolution of these binaries is determined by nuclear evolution of the donors and/or orbital angular momentum loss due to magnetic braking by the stellar wind of the donors and gravitational wave radiation. According to our model, the estimated total number of this type of black-hole binaries in the Galaxy is about 10000. If the magnetic braking is described by the Verbunt & Zwaan formula, the model predicts around 3000 transient systems with periods >2 hours and around 300 luminous stable systems with periods between 3 and 8 hours. Several dozens of these bright systems should be above the RXTE ASM sensitivity limit. The absence of such systems implies that angular momentum losses are reduced by a factor more than 2 with respect to the Verbunt & Zwaan prescription. We show that it is unlikely that the transient behaviour of black-hole short-period X-ray binaries is explained by the evolved nature of the stellar companion. A substantial fraction of black-hole binaries with periods >3 hours could be faint with truncated, stable cold accretion discs as proposed by Menou et al. Most of the semidetached black-hole binaries are expected to have periods shorter than ~2 hours. Properties of such, still to be observed, very small mass-ratio (q<0.02) binaries are different from those of their longer period cousins.Comment: 13 pages, 6 figures, accepted for publication in A&

    Evolution of low-mass binaries with black-hole components

    Full text link
    We consider evolutionary models for the population of short-period (<10 hr) low-mass black-hole binaries (LMBHB) and compare them with observations of soft X-ray transients (SXT). Evolution of LMBHB is determined by nuclear evolution of the donors and/or orbital angular momentum loss due to magnetic braking by the stellar wind of the donors and gravitational wave radiation. We show that the absence of observed stable luminous LMBHB implies that upon RLOF by the low-mass donor angular momentum losses are substantially reduced with respect to the Verbunt and Zwaan "standard" prescription for magnetic braking. Under this assumption masses and effective temperatures of the model secondaries of LMBHB are in a satisfactory agreement with the masses and effective temperatures (as inferred from their spectra) of the observed donors in LMBHB. Theoretical mass-transfer rates in SXTs are consistent with the observed ones if one assumes that accretion discs in these systems are truncated ("leaky"). We find that the population of short-period SXT is formed mainly by systems which had unevolved or slightly evolved (X_c > 0.35) donors at the RLOF. Longer period (0.5 - 1 day) SXT might descend from systems with initial donor mass about 1 solar and X_c < 0.35. It is unnecessary to invoke donors with almost hydrogen-depleted cores to explain the origin of LMBHB. Our models suggest that a very high efficiency of common-envelopes ejection is necessary to form LMBHB, unless currently commonly accepted empirical estimates of mass-loss rates by winds for pre-WR and WR-stars are significantly over-evaluated.Comment: 11 pages. To appear in New Astronomy Review, vol. 51, issues 10-12, Proceedings of "Jean-Pierre Lasota, X-ray binaries, accretion disks and compact stars" (October 2007); Ed. M. Abramowicz; v3: Eq. (8) for upper limit on mass-transfer rate and Figs. 4 and 7 correcte

    The accretion flow in the discless intermediate polar V2400 Ophiuchi

    Get PDF
    RXTE observations confirm that the X-ray lightcurve of V2400 Oph is pulsed at the beat cycle, as expected in a discless intermediate polar. There are no X-ray modulations at the orbital or spin cycles, but optical line profiles vary with all three cycles. We construct a model for line-profile variations in a discless accretor, based on the idea that the accretion stream flips from one magnetic pole to the other, and show that this accounts for the observed behaviour over the spin and beat cycles. The minimal variability over the orbital cycle implies that 1) V2400 Oph is at an inclination of only ~10 deg, and 2) much of the accretion flow is not in a coherent stream, but is circling the white dwarf, possibly as a ring of denser, diamagnetic blobs. We discuss the light this sheds on disc formation in intermediate polars.Comment: 10 pages, 12 figures, To appear in MNRAS, includes low-res figures to reduce siz

    A half-a-day long thermonuclear X-ray burst from KS 1731-260

    Full text link
    We report on an approximately twelve hour long X-ray flare from the low-mass X-ray binary KS 1731-260. The flare has a rise time of less than 13 min and declines exponentially with a decay time of 2.7 hours. The flare emission is well described by black-body radiation with peak temperature of 2.4 keV. The total energy release from the event is 10^{42} erg (for an assumed distance of 7 kpc). The flare has all the characteristics of thermo-nuclear X-ray bursts (so-called type I X-ray bursts), except for its very long duration and therefore large energy release (factor of 1500-4000 longer and 250-425 more energy than normal type I X-ray bursts from this source). The flare is preceded by a short and weak X-ray burst, possibly of type I. Days to weeks before the flare, type I X-ray bursts were seen at a rate of ~3 per day. However, after the flare type I X-ray bursting ceased for at least a month, suggesting that the superburst affected the type I bursting behaviour. The persistent emission is not significantly different during the non-bursting period. We compare the characteristics of this event with similar long X-ray flares, so-called superbursts, seen in other sources (4U 1735-44, 4U 1820-30, 4U 1636-53, Ser X-1, GX 3+1). The event seen from KS 1731-260 is the longest reported so far. We discuss two possible mechanisms that might cause these superbursts, unstable carbon burning (as proposed recently) and electron capture by protons with subsequent capture of the resulting neutrons by heavy nuclei.Comment: 10 pages, 4 figures, accepted for publication in A&

    The fight for accretion: discovery of intermittent mass transfer in BB Doradus in the low state

    Get PDF
    Our long-term photometric monitoring of southern nova-like cataclysmic variables with the 1.3-m SMARTS telescope found BB Doradus fading from V ~ 14.3 towards a deep low state at V ~ 19.3 in April 2008. Here we present time-resolved optical spectroscopy of BB Dor in this faint state in 2009. The optical spectrum in quiescence is a composite of a hot white dwarf with Teff = 30000 +- 5000 K and a M3-4 secondary star with narrow emission lines (mainly of the Balmer series and HeI) superposed. We associate these narrow profiles with an origin on the donor star. Analysis of the radial velocity curve of the H-alpha emission from the donor star allowed the measurement of an orbital period of 0.154095 +- 0.000003 d (3.69828 +- 0.00007 h), different from all previous estimates. We detected episodic accretion events which veiled the spectra of both stars and radically changed the line profiles within a timescale of tens of minutes. This shows that accretion is not completely quenched in the low state. During these accretion episodes the line wings are stronger and their radial velocity curve is delayed by ~ 0.2 cycle, similar to that observed in SW Sex and AM Her stars in the high state, with respect to the motion of the white dwarf. Two scenarios are proposed to explain the extra emission: impact of the material on the outer edge of a cold, remnant accretion disc, or the combined action of a moderately magnetic white dwarf (B1 <~ 5 MG) and the magnetic activity of the donor star.Comment: 10 pages, 10 figures, accepted by MNRA

    The Nature of the Compact X-ray Source in Supernova Remnant RCW 103

    Full text link
    The discovery of the 6.67 hr periodicity in the X-ray source 1E 161348-5055 associated with the supernova remnant RCW 103 has raised interesting suggestions about the nature of the X-ray source. Here we argue that in either accreting neutron star or magnetar model, a supernova fallback disk may be a critical ingredient in theoretical interpretations of 1E 161348-5055. We further emphasize the effect of fallback disks on the evolution of young compact objects in various ways, and suggest that even SS 433 could also be powered by fallback disk accretion process.Comment: 12 pages, 1 figure, accepted to ApJ
    • …
    corecore