3,170 research outputs found
Optimisation of hand posture stimulation using an electrode array and iterative learning control.
Nonlinear optimisation-based search algorithms have been developed for the precise stimulation of muscles in the wrist and hand, to enable stroke patients to attain predefined gestures. These have been integrated in a system comprising a 40 element surface electrode array that is placed on the forearm, an electrogoniometer and data glove supplying position data from 16 joint angles, and custom signal generation and switching hardware to route the electrical stimulation to individual array elements. The technology will be integrated in a upper limb rehabilitation system currently undergoing clinical trials to increase their ability to perform functional tasks requiring fine hand and finger movement. Initial performance results from unimpaired subjects show the successful reproduction of six reference hand postures using the system
A Combine On-Line Acoustic Flowmeter and Fluorocarbon Coolant Mixture Analyzer for The ATLAS Silicon Tracker
An upgrade to the ATLAS silicon tracker cooling control system may require a
change from C3F8 (octafluoro-propane) to a blend containing 10-30% of C2F6
(hexafluoro-ethane) to reduce the evaporation temperature and better protect
the silicon from cumulative radiation damage with increasing LHC luminosity.
Central to this upgrade is a new acoustic instrument for the real-time
measurement of the C3F8/C2F6 mixture ratio and flow. The instrument and its
Supervisory, Control and Data Acquisition (SCADA) software are described in
this paper. The instrument has demonstrated a resolution of 3.10-3 for
C3F8/C2F6 mixtures with ~20%C2F6, and flow resolution of 2% of full scale for
mass flows up to 30gs-1. In mixtures of widely-differing molecular weight (mw),
higher mixture precision is possible: a sensitivity of < 5.10-4 to leaks of
C3F8 into the ATLAS pixel detector nitrogen envelope (mw difference 160) has
been seen. The instrument has many potential applications, including the
analysis of mixtures of hydrocarbons, vapours for semi-conductor manufacture
and anaesthesia
Development of a custom on-line ultrasonic vapour analyzer/flowmeter for the ATLAS inner detector, with application to gaseous tracking and Cherenkov detectors
Precision sound velocity measurements can simultaneously determine binary gas
composition and flow. We have developed an analyzer with custom electronics,
currently in use in the ATLAS inner detector, with numerous potential
applications. The instrument has demonstrated ~0.3% mixture precision for
C3F8/C2F6 mixtures and < 10-4 resolution for N2/C3F8 mixtures. Moderate and
high flow versions of the instrument have demonstrated flow resolutions of +/-
2% F.S. for flows up to 250 l.min-1, and +/- 1.9% F.S. for linear flow
velocities up to 15 ms-1; the latter flow approaching that expected in the
vapour return of the thermosiphon fluorocarbon coolant recirculator being built
for the ATLAS silicon tracker.Comment: Paper submitted to TWEPP2012; Topical Workshop on Electronics for
Particle Physics, Oxford, UK, September 17-21, 2012. KEYWORDS: Sonar;
Saturated fluorocarbons; Flowmetry; Sound velocity, Gas mixture analysis. 8
pages, 7 figure
An evaluation of an adaptive learning system based on multimodal affect recognition for learners with intellectual disabilities
Artificial intelligence tools for education (AIEd) have been used to automate the provision of learning support to mainstream learners. One of the most innovative approaches in this field is the use of data and machine learning for the detection of a student's affective state, to move them out of negative states that inhibit learning, into positive states such as engagement. In spite of their obvious potential to provide the personalisation that would give extra support for learners with intellectual disabilities, little work on AIEd systems that utilise affect recognition currently addresses this group. Our system used multimodal sensor data and machine learning to first identify three affective states linked to learning (engagement, frustration, boredom) and second determine the presentation of learning content so that the learner is maintained in an optimal affective state and rate of learning is maximised. To evaluate this adaptive learning system, 67 participants aged between 6 and 18 years acting as their own control took part in a series of sessions using the system. Sessions alternated between using the system with both affect detection and learning achievement to drive the selection of learning content (intervention) and using learning achievement alone (control) to drive the selection of learning content. Lack of boredom was the state with the strongest link to achievement, with both frustration and engagement positively related to achievement. There was significantly more engagement and less boredom in intervention than control sessions, but no significant difference in achievement. These results suggest that engagement does increase when activities are tailored to the personal needs and emotional state of the learner and that the system was promoting affective states that in turn promote learning. However, longer exposure is necessary to determine the effect on learning
The application of precisely controlled functional electrical stimulation to the shoulder, elbow and wrist for upper limb stroke rehabilitation: a feasibility study.
Functional electrical stimulation (FES) during repetitive practice of everyday tasks can facilitate recovery of upper limb function following stroke. Reduction in impairment is strongly associated with how closely FES assists performance, with advanced iterative learning control (ILC) technology providing precise upper-limb assistance. The aim of this study is to investigate the feasibility of extending ILC technology to control FES of three muscle groups in the upper limb to facilitate functional motor recovery post-stroke
Status and Recent Results of the Acoustic Neutrino Detection Test System AMADEUS
The AMADEUS system is an integral part of the ANTARES neutrino telescope in
the Mediterranean Sea. The project aims at the investigation of techniques for
acoustic neutrino detection in the deep sea. Installed at a depth of more than
2000m, the acoustic sensors of AMADEUS are based on piezo-ceramics elements for
the broad-band recording of signals with frequencies ranging up to 125kHz.
AMADEUS was completed in May 2008 and comprises six "acoustic clusters", each
one holding six acoustic sensors that are arranged at distances of roughly 1m
from each other. The clusters are installed with inter-spacings ranging from
15m to 340m. Acoustic data are continuously acquired and processed at a
computer cluster where online filter algorithms are applied to select a
high-purity sample of neutrino-like signals. 1.6 TB of data were recorded in
2008 and 3.2 TB in 2009. In order to assess the background of neutrino-like
signals in the deep sea, the characteristics of ambient noise and transient
signals have been investigated. In this article, the AMADEUS system will be
described and recent results will be presented.Comment: 7 pages, 8 figures. Proceedings of ARENA 2010, the 4th International
Workshop on Acoustic and Radio EeV Neutrino Detection Activitie
Play&tune: user feedback in the development of a serious game for optimizing hearing aid orientation
Many hearing aid (HA) users are dissatisfied with HA performance in social situations. One way to improve HA outcomes is training the users to understand how HAs work. Play&Tune was designed to provide this training and to foster autonomy in hearing rehabilitation. We carried out two prototype evaluations and a prerelease evaluation of Play&Tune with 71 HA users, using an interview or online survey. Users gave detailed feedback on their experiences with the app. Most participants enjoyed learning about HAs and expressed a desire for autonomy over their HA settings. Our case study reinforces the importance of user feedback during app development
A Search for Jet Handedness in Hadronic Decays
We have searched for signatures of polarization in hadronic jets from decays using the ``jet handedness'' method. The polar angle
asymmetry induced by the high SLC electron-beam polarization was used to
separate quark jets from antiquark jets, expected to be left- and
right-polarized, respectively. We find no evidence for jet handedness in our
global sample or in a sample of light quark jets and we set upper limits at the
95% C.L. of 0.063 and 0.099 respectively on the magnitude of the analyzing
power of the method proposed by Efremov {\it et al.}Comment: Revtex, 8 pages, 2 figure
Field testing two innovative lighting interventions to influence waiting behaviours and movements on stairways in train stations
Features of lighting that can influence people’s behaviours have been identified in an earlier study, along with six scenarios where these could be applied to solve problems with movements through railway stations. The current paper describes the development and testing of novel lighting interventions for three of these scenarios, with two new products controlled by the Internet of Things technology integrated with operational railway systems. The first uses projected light to indicate preferred platform waiting locations. The second uses chasing light-emitting diode lighting along a staircase to encourage bi-directional movements. The field study has been carried out in real-world operational railway settings. An evaluation has been based on a theory-based approach to consider whether the lighting functions as intended and whether people react in anticipated ways. The study found that the lighting interventions have been successfully implemented, and there are indications of favourable responses from passengers, though these have been small effects. The approach to evaluation also assists with diagnosis of weaknesses in the initial concepts and determination of the situational factors that can compete with the behaviour influencing effect of the lighting. This enables refinement and further product development. Practical challenges in implementing trials in this type of operational setting have been identified
- …