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Abstract— Nonlinear optimisation-based search algorithms 
have been developed for the precise stimulation of muscles in 
the wrist and hand, to enable stroke patients to attain 
predefined gestures. These have been integrated in a system 
comprising a 40 element surface electrode array that is placed 
on the forearm, an electrogoniometer and data glove supplying 
position data from 16 joint angles, and custom signal 
generation and switching hardware to route the electrical 
stimulation to individual array elements. The technology will 
be integrated in a upper limb rehabilitation system currently 
undergoing clinical trials to increase their ability to perform 
functional tasks requiring fine hand and finger movement. 
Initial performance results from unimpaired subjects show the 
successful reproduction of six reference hand postures using 
the system. 
 
  Keywords—Automated optimisation, functional electrical 
stimulation, hand movement, surface electrode array. 

 
I. INTRODUCTION 

STROKE is the largest cause of adult disability in the     
UK, with more than 110,000 first incidents occurring 
annually [1]. Less than 15% of patients that experience initial 
upper-limb paralysis following stroke regain full function 
[2], which restricts their ability to perform everyday reaching 
and grasping tasks. A common impairment experienced 
poststroke is a restriction in hand opening function, caused 
by a limited ability to activate finger extensor muscles. 
Functional electrical stimulation (FES) can assist stroke 
patients in moving their impaired limbs, with clinical 
evidence [3] supported by neuroscience and motor learning 
results [4], [5] showing that the therapeutic action of FES is 
closely associated with the accuracy with which FES 
supports the patient’s movement over repeated attempts at 
the task. While most clinical FES systems employ open loop 
or triggered FES control, recent clinical trials have used a 
biomechanical model of the patient’s arm together with 
model-based controllers. These successful trials confirmed 
the significant potential of such FES control in providing 
more effective therapy [6]. Model-based FES control can 
mitigate physiological changes in the arm, and is critical to 
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reduce the effect of noise/disturbance, significantly increase 
accuracy and enable complex functional tasks to be 
performed.  It is the aim of many upper limb rehabilitation 
systems in development to transfer use to within the patient’s 
own home. However, no portable or home-based system 
applying FES to the combined shoulder, arm, wrist and hand 
has yet been clinically trialled: several stimulate the hand and 
wrist, including the commercially available Bioness H200 
[7], and a very small number of systems apply FES to the 
arm and shoulder. Implanted Bion electrodes have provided 
the best overall function, but involve costly surgery. A short-
coming of all surface electrode approaches is lack of 
selectivity, especially for the hand, due to the complexity of 
the muscle locations controlling hand movement and the 
precise positioning of electrodes that this necessitates [8].  

The recent emergence of multiple surface electrodes or 
an electrode array [9]–[12] enables selective stimulation of 
smaller muscle groups, such as those controlling hand 
movement [8], [13]. The use of electrode arrays and control 
hardware to precisely control the site of stimulation also 
reduces the need to repeatedly reposition surface electrodes. 
However, due to the close proximity of muscles associated 
with the hand and wrist, a method of selecting the desired 
elements for stimulation is required. In addition, due to the 
small size of stimulation sites for muscles controlling hand 
movement when compared to other larger muscle groups, 
intense stimulation signals are required that can lead to 
discomfort and muscle fatigue [14]. In general the methods 
of array element selection available in the literature are slow, 
simplistic and do not exploit an underlying model. The aim 
of this paper is to develop and verify a quantitative method 
of finding the optimal stimulation sites of an electrode array 
for a given movement pattern, providing accurate movement 
control of the hand and wrist for stroke rehabilitation, whilst 
minimising set-up time and the need to reposition electrodes. 
The approach taken utilises iterative learning control (ILC), a 
control technique that was developed for industrial systems 
that repetitively complete the same movement. Over repeated 
performances, ILC continually updates the FES input signals 
to reduce error in the movement. Recent work has 
successfully used ILC to regulate the timing and intensity of 
FES applied to stroke patient’s muscles whilst performing 
planar [15], [16] and 3D [6], [17]–[20] reaching and grasping 
tasks. In previous clinical trials ILC allowed the required 
assistive stimulation to be applied to a patient’s muscles, 
while also encouraging voluntary effort by reducing 
stimulation if a task is performed well. The inclusion of 
voluntary effort during stimulated movement is an important 
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factor for maximising motor recovery during FES therapy 
[4]. 

In this paper ILC is used in combination with simple 
identification procedures replacing the need for an explicit 
model of the wrist and hand. Once array stimulation patterns 
are identified for explicit hand gestures, it is shown how 
these may be incorporated into existing ILC algorithms 
which control FES applied to the shoulder and arm [6]. 

II. METHODS 

A data glove (5DT 14 Ultra, 5DT, USA) was used to 
collect joint angle data from the fingers. The glove 
incorporates 14 fiber-optic bend sensors that are positioned 
over the metacarpophalangeal and proximal interphalangeal 
joints to measure finger flexion and between each finger to 
measure abduction. A twin axis electrogoniometer (Model 
SG75, Biometrics, UK) was used to collect angle data for the 
wrist joint (flexion/extension and radial/ulnar deviation). A 
40 element electrode array (Tecnalia, Spain), comprising 5 x 
8 elements, was used to apply the FES. Each of the 40 array 
elements can be routed to one of four FES channels. The 
electrode array, data glove and electrogoniometer can be 
seen in Fig. 1.  

 

Figure 1: Electrode array with data glove and electrogoniometer used for 
stimulating and tracking hand and wrist movement. 

The array was positioned on each participant’s arm as 
shown in Fig. 1 covering extensor muscles of the wrist and 
fingers including: extensor carpi radialis longus, extensor 
carpi radialis brevis, extensor digitorum, extensor pollicis 
longus, extensor pollicis brevis, extensor indius, and flexor 
digitorum profundus. Routing of the array elements to the 
FES channels is performed by custom made RS232 
controlled multiplexor hardware, comprising an Arduino 
board and shift register array (Fig. 2). 

 

Figure 2: Electrodes array (bottom) with multiplexor hardware and four 
channel stimulator (top) 

  A modified commercial stimulator (Odstock, UK) is used 
to produce the FES signals, where pulsewidth, amplitude and 
frequency have been selected to produce a smooth muscle 
contraction [21]. For the stimulation signal, the system 
produces a 5V 40Hz square pulse train with variable 
pulsewidth for each channel. These pulses are then amplified 
by the stimulator, resulting in bi-phasic voltage-amplified 
stimulation. The pulse amplitude for each of the four 
channels is determined manually, whilst pulsewidth is the 
control system input and, therefore, is updated automatically. 
For safety, the stimulation signal pulsewidth is limited to 
between 0 to 300 s. The system is shown in Fig. 2. At the 
beginning of each testing session, the stimulator amplitudes 
are set by routing one channel to two elements of the array. 
The stimulator is set to output a 300 s signal whilst the 
amplitude is slowly increased until a maximum comfortable 
level is reached. The amplitudes of the remaining four 
channels are then set to identical levels. 

A. Optimisation Procedure 

Preliminary tests with the electrode array have indicated 
that single element stimulation can induce movement of 
individual fingers. However, when stimulating just one 
element of the array, a higher pulsewidth is required to 
produce movement of the hand and wrist than for traditional 
larger electrodes. The higher level of stimulation required 
when stimulating individual elements can cause sensations of 
discomfort to the participant, reflecting the findings of 
previous studies into electrode size [22]. Since lower 
pulsewidths are required to produce movement when 
stimulating multiple electrode elements simultaneously, 
hence reducing sensations of discomfort, a stimulation 
procedure was developed that can stimulate individual 
elements as well as “blocks” of multiple adjacent elements. 

Accordingly, let u(t) be a m x 1 vector of signals which 
specifies the FES stimulation input signal applied to any set 
of m single or multiple electrode elements at time t. Let y(t) 
be the p x 1 vector of joint angles. The dynamic relationship 
linking these variables can be written as y(t) = g(u(t),t) where 
g(·) is a vector function. An explicit algebraic representation 
of g(·) appears in [23]. The problem of finding a stimulation 
profile, u(t), which produces the required posture, yd(t), can 
be expressed as  

subject to constraints on u(t). Here ||·|| denotes a suitable 
signal norm.  

  This is readily tackled by the ILC framework, however 
the underlying model g(·) is generally required to be known. 
As detailed in [23], if only a final posture is required, with 
the joint trajectories taken to attain it not specified, the 
problem becomes significantly easier to tackle, and an 
explicit model of the system is not necessary. Instead an 
iterative procedure can be taken and involves the following 
steps: 

1) Set k = 0 and choose an initial input uk to be applied to 
the set of m electrode elements (or blocks of elements). Note 
that since only the ‘steady-state’ problem is considered, the 
time variable is omitted.  
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2) Gradually apply uk to the system experimentally and 
record the resulting joint angles yk once the hand and wrist 
has come to rest at its final position. Calculate the postural 
joint error ek = yd - yk 

3) Linearize the system about the operating point input 
uk. This is achieved by continuing to apply uk, but slowly 
varying each element of the vector in turn, and recording its 
individual effect on all the output joint angles. These data are 
used to produce a pm matrix which is denoted g'(uk).  

4) In simulation, solve the problem 

subject to constraints which are inherited from uk+1 via the 
update in step (5). There are many methods available to solve 
this problem, such as that described in [23]. 

5) Calculate the new input  

 

where v*k is the solution to the problem in step (4).  

6) Increment k and go to step (2). 

The above procedure is an implementation of Newton 
method based ILC [24]. The low dimensionality made 
possible by only specifying the final posture attained (rather 
than at all times between the initial and final postures) makes 
it straightforward to include the identification step (3) in 
place of a predefined system model g(·). Note that:  

• Choosing a set of m blocks of array elements that are 
known to correspond to relevant muscle groups, or to 
have appeared in previous solutions, reduces the 
dimension of the problem, and hence the time taken for 
identification. 

• The procedure may be stopped after a single or limited 
number of iterations in accordance with practical 
demands- 

• Newton method is just one technique in the class of 
gradient algorithms, and has well defined convergence 
criteria (see, for example, [25]). It has the benefit of 
having full theoretical underpinning within 
unconstrained and constrained ILC [24] approaches. 
However any approach that iteratively solves an input 
constrained nonlinear equation while embedding 
experimental data may be used in its place. 

• The above approach results in a stimulation pattern, u*, 
that associates each of the m electrode elements (or 
blocks of elements) with one of five levels of 
stimulation (four non-zero levels, plus zero). This 
pattern of stimulation can be used directly during 
rehabilitation in an openloop manner, however the 
accuracy of the movement is likely to degrade due to 
muscle fatigue, spasticity or other physiological effects. 

• To address this problem, the solution can be combined 
with feedback, where, for example a scalar gain γ is 
applied to u* whose value is proportional with the 
current overall joint error, || yd(t) - e(t)|| 2. 

• Suppose it is desired to incorporate hand tracking within 
an ILC scheme where other muscles are simultaneously 
stimulated, and a reference is given for each joint over 
the entire trial length. Ordinarily this would require a 
full model of the hand and wrist, however by only 
allowing hand and wrist muscles to be stimulated by a 
scalar multiple of u*, the dimensionality of the problem 
is reduced such that a model-free approach (e.g. so-
called ‘phase-lead ILC’ used in [6], [15]) is feasible. 
Moreover, this approach generalises to using any set of 
previously identified postures. 

B. Verification 

Three different reference postures were selected to verify 
the optimisation procedure; “pointing” with the index finger, 
“pinching” between thumb and index finger and an “open” 
hand posture. These postures incorporated specific finger 
movements as well as extension of the fingers and wrist, 
which comprise difficult movements for stroke patients to 
perform. Examples of the three hand postures are shown in 
Fig. 3. The iterative optimisation procedure was undertaken 
on two unimpaired participants who each provided no 
voluntary effort. The optimised solution was tested for the 
first 3 trials. Mean normalised error was calculated across all 
joints for each posture using 100 x || e|| x ||r-y0||, where y0 is 
the starting posture. Resulting error values were expressed as 
a percentage, with 0 indicating perfect reproduction of the 
reference posture and 100 indicating no improvement from 
the starting position. 

III. EXPERIMENTAL RESULTS 

Mean error results for the first 3 optimisation iterations 
are shown in Table I.  

TABLE I.  MEAN NORMALIZED ERROR (%) ACROSS ALL JOINTS FOR 
ITERATIONS 1-3. 

  Pointing Pinching Open 

Iteration 1 P1 
P2 

29.72 
28.66 

24.49 
35.31 

19.09 
22.16 

Iteration 2 P1 
P2 

11.19 
13.62 

12.62 
14.98 

14.36 
13.02 

Iteration 3 P1 
P2 

3.58 
1.46 

4.37 
3.89 

4.68 
3.45 

 

Results indicate that each iteration reduced mean error by 
approximately 30%, with mean error after 3 trials typically 
being < 5. 

Figure 3 shows the optimal stimulation sites identified 
from Participant 1, for the pointing, pinch and open hand 
postures. Current work is underway to extend these 
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verification tests to include stroke patients that are unable to 
extend their hand and fingers voluntarily without assistance. 

IV. DISCUSSION 

The aim of this paper was to develop and verify a 
quantitative method of finding the optimal stimulation sites 
of an electrode array for a given movement pattern. The 
optimisation procedure that has been developed can 
iteratively evaluated the accuracy of hand posture for each 
available combination of array elements in an automated 
approach. The presented method incorporates ILC, which 
has been shown to be a robust method of optimisation 
calculation [24].  

 

Figure 3: Example of optimal stimulation sites for pointing, pinching and 
open hand gestures (shading indicates the four non-zero stimulation points) 

The procedure was successful in selecting the most 
appropriate combination of stimulation sites and intensity to 
produce the desired movement for each participant. Mean 
joint error was greatly reduced when stimulation was applied 
to the optimal sites, compared with the starting posture of the 
hand. The automated selection of array element stimulation 
has two key benefits. First, the amount of setup time prior to 
FES therapy can be reduced and the undesirable need to 
reposition electrodes eliminated [8] and second, the 
movement produced by FES is improved by the automated 
selection of the optimal array elements for the desired 
movement. From the methods developed in this paper, it is 
possible to combine the use of the electrode array in 
functional rehabilitation systems incorporating reaching to 
manipulate objects that currently employ ILC [19]. 

V. CONCLUSION 

A system has been developed for the stimulation of 
forearm muscles using a surface electrode array. The system 
incorporates an optimisation procedure that automates the 
selection of array elements that produce the most accurate 
match to a desired hand posture. The optimisation procedure 
and stimulation using the identified array elements has been 
verified experimentally. Results indicate that the system will 
be useful in FES therapy for training fine grasping and 
manipulation movements. Collection of data is ongoing and 

a current feasibility trial is underway using the system with 
chronic stroke patients for assistance with extension 
movements of the hand and wrist.  
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