76 research outputs found

    Scientists' warning on extreme wildfire risks to water supply

    Get PDF
    2020 is the year of wildfire records. California experienced its three largest fires early in its fire season. The Pantanal, the largest wetland on the planet, burned over 20% of its surface. More than 18 million hectares of forest and bushland burned during the 2019–2020 fire season in Australia, killing 33 people, destroying nearly 2500 homes, and endangering many endemic species. The direct cost of damages is being counted in dozens of billion dollars, but the indirect costs on water‐related ecosystem services and benefits could be equally expensive, with impacts lasting for decades. In Australia, the extreme precipitation (“200 mm day −1 in several location”) that interrupted the catastrophic wildfire season triggered a series of watershed effects from headwaters to areas downstream. The increased runoff and erosion from burned areas disrupted water supplies in several locations. These post‐fire watershed hazards via source water contamination, flash floods, and mudslides can represent substantial, systemic long‐term risks to drinking water production, aquatic life, and socio‐economic activity. Scenarios similar to the recent event in Australia are now predicted to unfold in the Western USA. This is a new reality that societies will have to live with as uncharted fire activity, water crises, and widespread human footprint collide all‐around of the world. Therefore, we advocate for a more proactive approach to wildfire‐watershed risk governance in an effort to advance and protect water security. We also argue that there is no easy solution to reducing this risk and that investments in both green (i.e., natural) and grey (i.e., built) infrastructure will be necessary. Further, we propose strategies to combine modern data analytics with existing tools for use by water and land managers worldwide to leverage several decades worth of data and knowledge on post‐fire hydrology

    ‘Zulke bedrijven zijn deel van landbouwtoekomst’

    No full text
    Biologisch boeren is voor ÂŽeen groot aantalÂŽ boeren een serieuze optie voor de toekomst. Dat zei landbouwminister Piet Adema maandag tijdens een werkbezoek aan het melkveebedrijf van Jelle en Willian Hakvoort in het Flevolandse Rutten

    ModĂ©lisation de l’impact des terrasses agricoles et du rĂ©seau d’écoulement artificial sur la rĂ©ponse hydrologique des versants

    No full text
    Terrace cultivation and artificial drainage were implemented on Mediterranean hillslopes to increase arable land surface and for better water management. Degradation of terraces and channels can lead to an increase in flood risk, erosion and crop damage. To improve our understanding of their effect on hillslope hydrologic response, this thesis compares different modelling approaches. We first simulated the hydrologic response of a Mediterranean catchment (0.91 km2) with terrace cultivation and artificial drainage using a physically-based, fully distributed storm flow model for agricultural catchments. Simulation performance is impressive for some storms, even though the model does not account for terraces. In order to model the effects of terrace cultivation and artificial drainage on hillslope hydrologic response explicitly, we subsequently developed a new distributed model with only geometric and flow velocity parameters, using a linear response time distribution combined with the hillslope geomorphologic instantaneous unit hydrograph. Simulations on virtual hillslopes and catchments with a non-optimal channel network (non-OCN) suggest that (i) hydrologic response is faster and attains higher peak flows for longer interface lengths between agricultural fields and drainage channels; (ii) overland flow velocity has greater influence on peak flow than channel flow velocity; and (iii) the combined effect of increased drainage density and introduction of terrace cultivation is enhanced peak flow at the outlet, and a reduction of peak flow from upstream terraces.L’amĂ©nagement des versants mĂ©diterranĂ©ens en terrasses et en fossĂ©s avait pour but d’augmenter la surface agricole et de permettre une meilleure gestion de l’eau. La dĂ©gradation des terrasses et des fossĂ©s peut conduire Ă  une augmentation des risques d’inondation, d’érosion et de maintien des cultures. Pour amĂ©liorer la connaissance de l’impact rĂ©el sur la rĂ©ponse hydrologique des versants, cette thĂšse suit diffĂ©rentes approches de modĂ©lisation. D’abord la rĂ©ponse hydrologique d’un bassin versant mĂ©diterranĂ©en (0.91 km2) avec des terrasses et des fossĂ©s amĂ©nagĂ©s est simulĂ©e Ă  l’aide d’un modĂšle distribuĂ©, Ă©vĂ©nementiel, Ă  base physique, adaptĂ© aux bassins versants agricoles. La performance est trĂšs satisfaisante pour certains Ă©vĂ©nements simulĂ©s, mĂȘme si le modĂšle ne tient pas compte des terrasses. Afin de modĂ©liser l’impact des terrasses agricoles et de l’écoulement artificiel, nous avons conçu un nouveau modĂšle distribuĂ© et parcimonieux qui utilise une distribution linĂ©aire du temps de rĂ©ponse, combinĂ© avec l’hydrogramme unitaire instantanĂ© gĂ©omorphologique. Les simulations sur des versants et bassins virtuels avec un rĂ©seau non-optimal de drainage (non-OCN) montrent que (i) pour de longues interfaces entre une parcelle et un cours d’eau la rĂ©ponse hydrologique est plus rapide et le dĂ©bit de pointe plus Ă©levĂ© ; (ii) la vitesse du ruissellement de surface a un plus grand impact sur le dĂ©bit de pointe que la vitesse d’écoulement dans les fossĂ©s ; et (iii) la densitĂ© de drainage accrue combinĂ©e avec la crĂ©ation de terrasses rĂ©sulte en un dĂ©bit de pointe plus Ă©levĂ© en aval et moins Ă©levĂ© en amont.Terrasbouw en kunstmatige afvoer worden toegepast op mediterrane hellingen om het landbouwoppervlak te vergroten en om waterbeheer te verbeteren. De degradatie van terrassen en afvoerkanalen leidt onvermijdelijk tot een toename van overstromingsrisico, erosie en gewasschade. Om beter te begrijpen welk effect ze hebben op de hydrologische respons van hellingen vergelijken we in dit proefschrift verschillende modelleermethoden. Allereerst simuleerden we de hydrologische respons van een mediterraan afwateringsreservoir (0.91 km2) met terrasbouw en kunstmatige afvoer met behulp van een fysisch-gebaseerd en volledig gedistribueerd model voor afvoer van stormwater in agrarische stroomgebieden. Een aantal stormen kan met grote nauwkeurigheid gesimuleerd worden zonder expliciet rekening te houden met de aanwezigheid van terrassen. Om de effecten van terrasbouw en kunstmatige afvoer op de hydrologische response van hellingen expliciet te modelleren, hebben we vervolgens een nieuw gedistribueerd model ontwikkeld met enkel parameters voor geometrie en stroomsnelheid, aan de hand van een lineaire verdeling van de reactietijd in combinatie met het geomorfologisch ogenblikkelijk eenheidshydrogram. Simulaties op virtuele hellingen en afwateringsreservoirs met een niet-optimaal afvoersysteem (non-OCN) suggereren dat (i) hydrologische reactietijden korter en piekafvoeren hoger zijn voor een langer grensvlak tussen landbouwpercelen en afvoerkanalen; (ii) dat de snelheid van oppervlakkige afstroming een grotere invloed heeft op piekafvoer dan stroomsnelheid in het afvoersysteem; en (iii) dat een grotere afvoerdichtheid in combinatie met terrasbouw leidt tot hogere piekafvoer aan het uitstroompunt en lagere piekafvoer ter hoogte van de terrassen

    Modelling study of the effects of terrace cultivation and artificial drainage on hillslope hydrologic response

    No full text
    L'amĂ©nagement des versants mĂ©diterranĂ©ens en terrasses et en fossĂ©s avait pour but d'augmenter la surface agricole et de permettre une meilleure gestion de l'eau. La dĂ©gradation des terrasses et des drains peut conduire Ă  une augmentation des risques d'inondation, d'Ă©rosion et de maintien des cultures. Pour amĂ©liorer la connaissance de l'impact rĂ©el sur la rĂ©ponse hydrologique des versants, cette thĂšse suit diffĂ©rentes approches de modĂ©lisation. D'abord la rĂ©ponse hydrologique d'un bassin versant mĂ©diterranĂ©en (0.91 km2) avec des terrasses et des fossĂ©s amĂ©nagĂ©s est simulĂ©e Ă  l'aide d'un modĂšle distribuĂ©, Ă©vĂ©nementiel, Ă  base physique, adaptĂ© aux bassins versants agricoles. La performance est trĂšs satisfaisante pour certains Ă©vĂ©nements simulĂ©s, mĂȘme si le modĂšle ne tient pas compte des terrasses. Afin de modĂ©liser l'impact des terrasses agricoles et de l'Ă©coulement artificiel, nous avons conçu un nouveau modĂšle distribuĂ© et parcimonieux qui utilise une distribution linĂ©aire du temps de rĂ©ponse, combinĂ© avec l'hydrogramme unitaire instantanĂ© gĂ©omorphologique. Les simulations sur des versants et bassins virtuels avec un rĂ©seau non-optimal de drainage (non-OCN) montrent que (i) pour de longues interfaces entre une parcelle et un cours d'eau la rĂ©ponse hydrologique est plus rapide et le dĂ©bit de pointe plus Ă©levĂ©; (ii) la vitesse du ruissellement de surface a un plus grand impact sur le dĂ©bit de pointe que la vitesse d'Ă©coulement dans les fossĂ©s; et (iii) la densitĂ© de drainage accrue combinĂ©e avec la crĂ©ation de terrasses rĂ©sulte en un dĂ©bit de pointe plus Ă©levĂ© en aval et moins Ă©levĂ© en amont.Terrace cultivation and artificial drainage were implemented on Mediterranean hillslopes for multiple reasons: agricultural terraces increase arable land surface and artificial drainage allows for better water management. Degradation of terraces and channels inevitably leads to an increase in flood risk, erosion and, eventually, crop damage. Little is known about their effect on hillslope hydrologic response, and therefore this thesis presents an integrated method where we compare different modelling approaches. We first simulated the hydrologic response of a Mediterranean catchment (0.91 km2) with terrace cultivation and artificial drainage using a physically-based, fully distributed storm flow model for agricultural catchments. Simulation performance is impressive for some storms, even though the model does not account for terraces. In order to model the effects of terrace cultivation and artificial drainage on hillslope hydrologic response explicitly, we subsequently developed a new distributed model with only geometric and flow velocity parameters, using a linear response time distribution combined with the hillslope geomorphologic instantaneous unit hydrograph. Simulations on virtual hillslopes and catchments with a non-optimal channel network suggest that (i) drainage is faster and attains higher peak flows for longer interface lengths between agricultural fields and drainage channels; (ii) overland flow velocity has greater influence on peak flow than channel flow velocity; and (iii) the combined effect of increased drainage density and introduction of terrace cultivation is enhanced peak flow at the outlet, and a reduction of peak flow from upstream terraces

    A model for distributed GIUH-based flow routing on natural and anthropogenic hillslopes

    No full text
    INRA UMR LISAH : Equipe Eau et Polluants en Bassins Versants [email protected] audienceAttempts to reduce the number of parameters in distributed rainfall-runoff models have not yet resulted in a model that is accurate for both natural and anthropogenic hillslopes. We take on the challenge by proposing a distributed model for overland flow and channel flow based on a combination of a linear response time distribution and the hillslope geomorphologic instantaneous unit hydrograph (GIUH), which can be calculated with only a digital elevation model and a map with field boundaries and channel network as input. The spatial domain is subdivided into representative elementary hillslopes (REHs) for each of which we define geometric and flow velocity parameters and compute the GIUH. The catchment GIUH is given by the sum of all REH responses. While most distributed models only perform well on natural hillslopes, the advantage of our approach is that it can also be applied to modified hillslopes with for example a rectangular drainage network and terrace cultivation. Tests show that the REH-GIUH approach performs better than classical routing functions (exponential and gamma). Simulations of four virtual hillslopes suggest that peak flow at the catchment outlet is directly related to drainage density. By combining the distributed flow routing model with a lumped-parameter infiltration model, we were also able to demonstrate that terrace cultivation delays the response time and reduces peak flow in comparison to the same hillslope, but with a natural stream network. The REH-GIUH approach is a first step in the process of coupling distributed hydrological models to erosion and water quality models at the REH (associated with agricultural management) and at the catchment scale (associated with the evaluation of the environmental impact of human activities). It furthermore provides a basis for the development of models for large catchments and urban or peri-urban catchments
    • 

    corecore