45 research outputs found

    Whole genome sequencing identifies structural variants contributing to hematologic traits in the NHLBI TOPMed program

    Get PDF
    Genome-wide association studies have identified thousands of single nucleotide variants and small indels that contribute to variation in hematologic traits. While structural variants are known to cause rare blood or hematopoietic disorders, the genome-wide contribution of structural variants to quantitative blood cell trait variation is unknown. Here we utilized whole genome sequencing data in ancestrally diverse participants of the NHLBI Trans Omics for Precision Medicine program (N = 50,675) to detect structural variants associated with hematologic traits. Using single variant tests, we assessed the association of common and rare structural variants with red cell-, white cell-, and platelet-related quantitative traits and observed 21 independent signals (12 common and 9 rare) reaching genome-wide significance. The majority of these associations (N = 18) replicated in independent datasets. In genome-editing experiments, we provide evidence that a deletion associated with lower monocyte counts leads to disruption of an S1PR3 monocyte enhancer and decreased S1PR3 expression

    PopDel identifies medium-size deletions simultaneously in tens of thousands of genomes

    Get PDF
    Thousands of genomic structural variants (SVs) segregate in the human population and can impact phenotypic traits and diseases. Their identification in whole-genome sequence data of large cohorts is a major computational challenge. Most current approaches identify SVs in single genomes and afterwards merge the identified variants into a joint call set across many genomes. We describe the approach PopDel, which directly identifies deletions of about 500 to at least 10,000 bp in length in data of many genomes jointly, eliminating the need for subsequent variant merging. PopDel scales to tens of thousands of genomes as we demonstrate in evaluations on up to 49,962 genomes. We show that PopDel reliably reports common, rare and de novo deletions. On genomes with available high-confidence reference call sets PopDel shows excellent recall and precision. Genotype inheritance patterns in up to 6794 trios indicate that genotypes predicted by PopDel are more reliable than those of previous SV callers. Furthermore, PopDel’s running time is competitive with the fastest tested previous tools. The demonstrated scalability and accuracy of PopDel enables routine scans for deletions in large-scale sequencing studies

    A sequence variant associating with educational attainment also affects childhood cognition

    Get PDF
    Only a few common variants in the sequence of the genome have been shown to impact cognitive traits. Here we demonstrate that polygenic scores of educational attainment predict specific aspects of childhood cognition, as measured with IQ. Recently, three sequence variants were shown to associate with educational attainment, a confluence phenotype of genetic and environmental factors contributing to academic success. We show that one of these variants associating with educational attainment, rs4851266-T, also associates with Verbal IQ in dyslexic children (P=4.3 x 10(-4), beta=0.16 s.d.). The effect of 0.16 s.d. corresponds to 1.4 IQ points for heterozygotes and 2.8 IQ points for homozygotes. We verified this association in independent samples consisting of adults (P=8.3 x 10(-5), beta=0.12 s.d., combined P=2.2 x 10(-7), beta=0.14 s.d.). Childhood cognition is unlikely to be affected by education attained later in life, and the variant explains a greater fraction of the variance in verbal IQ than in educational attainment (0.7% vs 0.12%,. P=1.0 x 10(-5))

    Lipoprotein(a) Concentration and Risks of Cardiovascular Disease and Diabetes

    Get PDF
    Publisher's version (útgefin grein)Background: Lipoprotein(a) [Lp(a)] is a causal risk factor for cardiovascular diseases that has no established therapy. The attribute of Lp(a) that affects cardiovascular risk is not established. Low levels of Lp(a) have been associated with type 2 diabetes (T2D). Objectives: This study investigated whether cardiovascular risk is conferred by Lp(a) molar concentration or apolipoprotein(a) [apo(a)] size, and whether the relationship between Lp(a) and T2D risk is causal. Methods: This was a case-control study of 143,087 Icelanders with genetic information, including 17,715 with coronary artery disease (CAD) and 8,734 with T2D. This study used measured and genetically imputed Lp(a) molar concentration, kringle IV type 2 (KIV-2) repeats (which determine apo(a) size), and a splice variant in LPA associated with small apo(a) but low Lp(a) molar concentration to disentangle the relationship between Lp(a) and cardiovascular risk. Loss-of-function homozygotes and other subjects genetically predicted to have low Lp(a) levels were evaluated to assess the relationship between Lp(a) and T2D. Results: Lp(a) molar concentration was associated dose-dependently with CAD risk, peripheral artery disease, aortic valve stenosis, heart failure, and lifespan. Lp(a) molar concentration fully explained the Lp(a) association with CAD, and there was no residual association with apo(a) size. Homozygous carriers of loss-of-function mutations had little or no Lp(a) and increased the risk of T2D. Conclusions: Molar concentration is the attribute of Lp(a) that affects risk of cardiovascular diseases. Low Lp(a) concentration (bottom 10%) increases T2D risk. Pharmacologic reduction of Lp(a) concentration in the 20% of individuals with the greatest concentration down to the population median is predicted to decrease CAD risk without increasing T2D risk.Peer Reviewe

    Genome-wide association study identifies 74 loci associated with educational attainment

    Get PDF
    Educational attainment is strongly influenced by social and other environmental factors, but genetic factors are estimated to account for at least 20% of the variation across individuals1. Here we report the results of a genome-wide association study (GWAS) for educational attainment that extends our earlier discovery sample1,2 of 101,069 individuals to 293,723 individuals, and a replication study in an independent sample of 111,349 individuals from the UK Biobank. We identify 74 genome-wide significant loci associated with the number of years of schooling completed. Single-nucleotide polymorphisms associated with educational attainment are disproportionately found in genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, especially during the prenatal period, and enriched for biological pathways involved in neural development. Our findings demonstrate that, even for a behavioural phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable associated genetic variants that suggest biologically relevant pathways. Because educational attainment is measured in large numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to characterize the genetic influences of related phenotypes, including cognition and neuropsychiatric diseases

    On shortest crucial words avoiding abelian powers

    Get PDF
    Let k ≥ 2 be an integer. An abeliank th power is a word of the form X1 X2 ⋯ Xk where Xi is a permutation of X1 for 2 ≤ i ≤ k. A word W is said to be crucial with respect to abelian kth powers if W avoids abelian kth powers, but W x ends with an abelian kth power for any letter x occurring in W. Evdokimov and Kitaev (2004) [2] have shown that the shortest length of a crucial word on n letters avoiding abelian squares is 4 n - 7 for n ≥ 3. Furthermore, Glen et al. (2009) [3] proved that this length for abelian cubes is 9 n - 13 for n ≥ 5. They have also conjectured that for any k ≥ 4 and sufficiently large n, the shortest length of a crucial word on n letters avoiding abelian kth powers, denoted by ℓk (n), is k2 n - (k2 + k + 1). This is currently the best known upper bound for ℓk (n), and the best known lower bound, provided in Glen et al., is 3 k n - (4 k + 1) for n ≥ 5 and k ≥ 4. In this note, we improve this lower bound by proving that for n ≥ 2 k - 1, ℓk (n) ≥ k2 n - (2 k3 - 3 k2 + k + 1); thus showing that the aforementioned conjecture is true asymptotically (up to a constant term) for growing n
    corecore