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Genome-wide association studies have identified thousands of single nucleo-
tide variants and small indels that contribute to variation in hematologic traits.
While structural variants are known to cause rare blood or hematopoietic
disorders, the genome-wide contribution of structural variants to quantitative
blood cell trait variation is unknown. Here we utilized whole genome
sequencing data in ancestrally diverse participants of the NHLBI Trans Omics
for Precision Medicine program (N = 50,675) to detect structural variants
associated with hematologic traits. Using single variant tests, we assessed the
association of common and rare structural variants with red cell-, white cell-,
and platelet-related quantitative traits and observed 21 independent signals
(12 common and 9 rare) reaching genome-wide significance. The majority of
these associations (N = 18) replicated in independent datasets. In genome-
editing experiments, we provide evidence that a deletion associated with
lower monocyte counts leads to disruption of an S1PR3 monocyte enhancer
and decreased S1PR3 expression.

Structural variants (SVs) are an important, yet under-studied type of
human genetic variation. Numerous studies have implicated SVs
(defined as > ~50bp) with human diseases as well as normal pheno-
typic variation1–5. Common SVs (MAF > 1%) are enriched among loci
identified in genome-wide association studies (GWAS)6. In non-coding
regions, SVs have a greater impact on gene expression compared to
single nucleotide variants (SNVs) and small insertions and deletions
(indels)7. However, the discovery and genotyping of SVs is challenging
and has lagged behind that of SNVs and indels. Many SVs are located
within repetitive regions of the genome and often have complex
structures including multiallelic copy number or repeat expansion,
deletions with multiple breakpoints, or repeated rearrangement or
complex inversions6. As a result, the contribution of SVs to the genetic
architecture of complex traits remains poorly characterized.

The recent application of ensemble detection methods to whole
genome sequencing (WGS) projects, particularly to large, multi-
ancestry datasets, provides an opportunity to characterize the

contribution of common and rare SVs to complex traits. Towards this
end, we have utilized SVs detected fromhigh-coverageWGS data from
theNHLBI Trans-Omics for PrecisionMedicine (TOPMed)programand
characterized their relationship to quantitative blood cell traits.

Red blood cell (RBC), white blood cell (WBC), and platelet
laboratory parameters are routinely measured in clinical laboratories
and used for monitoring general health status and diagnosis of
acquired and inherited blood-related disorders. In the general popu-
lation, hematologic quantitative traits are highly heritable and serve as
a model system for studying the genetic architecture of complex
traits8. Thus far, hundreds of genomic loci and thousands of genetic
variants have been associated with hematologic traits; however, these
variants are almost exclusively SNVs and indels9,10. For a fewGWAS loci,
there is evidence that common SVs are likely the causal variant
responsible for the phenotypic effects in the population at large. For
example, a common3.7 kbalpha-globingenedeletion largely accounts
for the strong association signal between RBC phenotypes and the
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16p13.3 locus in African ancestry populations11–13. While private SVs
have been identified in individuals with rare Mendelian blood dis-
orders (for example, a rare PLAU 78 kb tandemduplication responsible
for autosomal dominant Quebec platelet disorder14), the contribution
of rare SVs (MAF < 1%) to quantitative hematologic traits among
unselected individuals has not been assessed.

In up to 50,675 ancestrally diverse TOPMed participants, we
assessed the association of common and rare SVs (deletions, dupli-
cations, and inversions) with variation in RBC, WBC, and platelet-
related quantitative traits. We characterized linkage disequilibrium
patterns and performed conditional regression analyses that included
SNVs/indels previously associated with the same hematologic trait.
Additionally, we used gene editing in monocytic and primary human
hematopoietic stem and progenitor cells (HSPCs) followed by xeno-
transplantation to demonstrate the mechanism by which a newly
detected deletion disrupts an S1PR3 monocyte enhancer and leads to
decreased S1PR3 expression and lower monocyte count.

Results
Identification of common and rare SVs associated with blood
cell traits
We performed single variant association tests, across 24 quantitative
hematologic traits in up to 50,675multi-ancestry TOPMedparticipants
(Supplementary Data 1). Single variant association tests were per-
formed for SVs with a minor allele count (MAC) ≥ 5 (number of
SVs=96,049). SVs in TOPMedwere detected and genotyped fromWGS
using the Parliament2 pipeline15 and muCNV genotyper16 (see Meth-
ods). The QQ plots and genomic inflation factors (ranging from 0.981
to 1.056) were well-calibrated indicating good control of population
stratification and relatedness (Fig. S1). Further stratification of the QQ
plots by allele frequency showed no evidence of inflation even
for minor allele counts in the 5–10 range (Fig. S2). Across the 24
hematologic traits, a total of 21 independent SVs (deletions=14,
duplications=6, and inversions=1) or 41 SV-trait associations were
genome-wide significant (Table 1 and Fig. S3).

The 21 trait-associated SVs ranged in size from ~60 bp to >160 kb
(Table 1) and exhibited a range of allele frequencies: 12 are common
(overall TOPMed MAF > 1%) and 9 are rare (ranging from 0.006% to
0.7% MAF in TOPMed) with a few significant SVs exhibiting allele
frequencies differences across populations (Table 1). For instance,
the monocyte-associated deletion on chromosome 9q22.1 and a sub-
set of the 16p13.3 red cell trait-associated SVs are more common in
individuals of African ancestry than in individuals of non-African
ancestry.

Replication of significant SV-blood cell trait associations
Weattempted replication for eachof the 21 trait-associated SVs using a
combination of short-read and long-read WGS data and genotype
imputation. We utilized independent datasets composed of Icelandic
(deCODE genetics)17–19 and multi-ancestry (UK Biobank, UKBB)20 par-
ticipants. Note that the SV calling and genotyping algorithms used in
replication datasets (described under Methods) are different from the
Parliament2 pipeline used for SV discovery in TOPMed. To account for
these methodological differences, we determined a set of “repre-
sentative SVs” in deCODE genetics and UKBB datasets. We defined an
SV in a replication dataset as “representative” if the SV was located
within 5 kb of the trait-associated TOPMed SV and if the two SV sizes
overlapped by at least 25%. In addition, we considered SVs as repre-
sentative if they were the same structural variant type (e.g. both SVs
were deletions) and had similarminor allele frequencies in the relevant
population.

Using these criteria, 3 of the 21 trait-associated SVs did not have a
SV representative in deCODE or UKBB datasets, including SVs at
2q11.2 (2:88832769-88860930), 3q22.1 (3:133621201-133784900), and
17p11.2 (17:21659501-21795800) (Supplementary Data 2). A total of 18

trait-associated SVs did have a representative and all of these were
robustly replicated for the same blood cell trait (i.e., with a p-value <
0.05/number of its representative SVs in deCODE Icelandic, UKBB
British, UKBB African, or UKBB South Asian cohorts and consistent
direction of the effect) (Supplementary Data 2).

Trait-associated SVs in regions of LD with known GWAS loci
To determine if trait-associated SVs discovered in TOPMed are inde-
pendent of previously reported GWAS SNVs/indels9,10,21–23, we calcu-
lated pairwise linkage disequilibrium (LD) between TOPMed SVs and
TOPMed SNVs/indels (Table 2, Fig. S4). We also performed two sets of
conditional analyses (see Methods). LD analysis shows 16 of 21 trait-
associated SVs are in at least moderate LD (r2 ≥0.75) with one SNV/
indel previously associated with the same hematologic trait (Table 2,
Fig. S4). These include 7 SVs with at least one trait-associated SNV/
indel in near perfect LD (r2 ≥0.99). Conditional regression analysis
confirmed that 16 SV association signals were not significant following
adjustment for known SNV/indels at the same trait loci (Table 3),
supporting the non-independence between SV and SNV/indel asso-
ciations at these loci.

Conditional analyses of trait-associated SVs adjusting for known
GWAS SNVs/indels
A total of 5 trait-associated SVs remained genome-wide significant
following conditional analyses (Table 3). This result suggests that these
association SV signals may be causally distinct and that the previously
identified association with an SNV/indel was reported due to LD with
the unmeasured causal SV. These 5 SVs span 4 genomic loci. We dis-
cuss these genomic loci in greater detail below.

16p13.3 (alpha-globin) locus. The strongest association signal in our
analyses was located at the 16p13.3 locus where a deletion spanning
HBA1/HBA2 (16:172001-177200) was associated with all 7 red cell traits
(Table 1, Fig. S5). LD and conditional analyses indicate this deletion
(16:172001-177200) is independent of other known red cell trait-
associated SNVs/indels (Tables 2, 3). Although Parliament2 predicted
this deletion as being 5.2 kb in size (see Table 1), this deletion repre-
sents a previously characterized 3.7 kb alpha-globin deletion11. This
was confirmed by WGS read visualization in samples predicted to
exhibit the HBA1/HBA2 (16:172001-177200) deletion. Visualization
shows SV breakpoints predicted by Parliament2 for this event are
inaccurate and span the previously characterized 3.7 kb deletion
(see example in Fig. S5). The 3.7 kb alpha-globin deletion is known to
be more common in African ancestry individuals21. In our study, the
overall allele frequency of theHBA1/HBA2 deletion (16:172001-177200)
was 5.7% and 17.6% in the African ancestry sub-population.

SV analyses also found the HBA1/HBA2 deletion (16:172001-
177200) as significantly associated with higher mean platelet volume
(MPV) (Table 1). This was unexpected as none of the alpha-globin
genes are known to regulate megakaryocyte or platelet production.
While transcripts of genes located within the alpha-globin cluster on
16p13.3 are detectable in iPSC-inducedmegakaryocytes24, we observed
no evidence that this deletion is a cis-eQTL among African-ancestry
individuals from theTOPMedGeneSTAR cohort (Bonferroni-corrected
P-values > 0.15 for all genes within a 1Mbwindow). These observations
arebasedonevidence fromanalysisofRNA fromplatelets (n = 110) and
iPSC-induced megakaryocytes (n = 84). Relatedly, we found no asso-
ciation between the alpha-globin deletion (16:172001-177200) and
circulating platelet counts in TOPMed (P =0.75). Based on these
observations, along with the lack of any apparent association of the
16:172001-177200 deletion with circulating platelet count in TOPMed
(P = 0.75), we hypothesize that the association with platelet size likely
represents a laboratory artifact in which very small (microcytic) RBCs
are being counted as “large platelets” thereby resulting in an apparent
increase in MPV.
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In addition to the HBA1/HBA2 deletion (16:172001-177200), ana-
lyses identified 3 other 16p13.3 deletions located within 500 kb of the
alpha-globin gene cluster. LD and conditional analyses suggest these 3
deletions arenot independent from trait-associated SNVs/indels in this
region (Tables 2, 3). However, all 3 deletions showed a similar “tha-
lassemia-like” pattern of red cell phenotypic association (lower MCH
and MCV and higher RBC count) (Table 1)11. These deletions range in
size from ~70bp to 19,000bp. The ~19 kb deletion (allele frequency
0.006% in TOPMed overall and 0.4% in TOPMed Asian ancestry indi-
viduals) impacts both HBA1 and HBA2 and likely corresponds to the
well-characterized alpha-thalassemia variant known as –(SEA)11. The
two other red cell trait-associated SVs on 16p13.3 are located ~70 to
~400 kb downstream of the alpha-globin genes and are not predicted
to alter regions involved in alpha-globin gene regulation or show evi-
dence by promoter Hi-C capture of physical interaction with globin
gene promoters in blood cells (Supplementary Data 3).

17p11.2 (KCNJ18) locus. A complex, multiallelic SV near the cen-
tromere of chromosome 17 (17p11.2) was significantly associatedwith
higher lymphocyte proportions and lower neutrophil proportions
(Table 1, Fig. S5). This SV is predicted by Parliament2 to be a large
duplication that includes the KCNJ18 gene. Of note, the genomic
region containing KCNJ18 is not present in GRCh37; thus, this region
was not interrogated in prior GRCh37 blood cell trait GWAS. In
GRCh38, there is one copy of KCNJ18; however, based on Parliament2
SV calls, this region is likely duplicated (diploid copy number = 4) in
most individuals (~87% of individuals in our TOPMed dataset). A
subset of individuals (~2.7%) are estimated to have more than 4
diploid copies.

There is no LD between the KCNJ18 SV and SNV/indels in the
region (Table 2) and the SV-trait association is independent of known
GWAS variants (Table 3). These results are consistent with a recent
TOPMed WGS-based analysis, where no SNVs/indels in the 17p11.2
region were associated with WBC, neutrophil, or lymphocyte traits22.
However, given the phenotypic pattern (opposing effects on neu-
trophil and lymphocyte proportions) associated with the KCNJ18
duplication, the complexity of the locus, the absence of a known role
of KCNJ18 in leukocyte biology, and the lack of detection in our repli-
cation cohorts (see above) additional work is needed to substantiate
these results.

2p11.2 and 14q32.33 immunoglobulin gene regions. Complex SVs at
two loci, 2p11.2 and 14q32.33, were significantly associated with lym-
phocyte, neutrophil and WBC traits (Table 1, Fig. S5). These SV asso-
ciations remained significant following adjustment for known WBC
trait-associated SNVs/indels (Table 3). SVs at both of these loci are rare
and relatively large in size (Table 1). They are predicted to impact
immunoglobulin kappa (2p11.2) and heavy chain (14q32.33) gene
clusters. Based on their location and on visualization of WGS reads,
these SVs likely represent somatic deletions and/or complex rearran-
gements due to V(D)J recombination events related to B cell matura-
tion or immunoglobulin production25.

Proportion of TOPMed SVs tagging known hematologic trait
GWAS sentinel SNV/indels
To more broadly understand the extent to which SVs tag known,
blood-cell trait SNVs/indels, we calculated LD for the genotypes of
previously-reported SNVs/indels10 and the genotypes of SVs TOPMed
participants. These analyses were performed in European ancestry
samples (see Methods). Approximately 3% of previously-reported
blood cell trait-associated SNVs/indels10 (171 of the 6652) were well-
tagged (r2 > 0.8) by a TOPMed SV. For these 171 correlated pairs, we
compared the trait-association p-values in TOPMed in an equivalent
sample set of individualswith European ancestry. Formost of the SNV/
indel-SV pairs, the p-values were within an order of magnitude of eachTa
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other (Fig. S6), indicating additional functional analyses are needed to
identify the causal variant.

Functional annotation of blood cell trait-associated SVs
Functional annotation can provide additional information to prioritize
causal variants at trait-associated loci. Of the 21 trait-associated SVs, 7
SVs (4 duplications and 3 deletions) are predicted to overlap coding
regions and thus potentially impact protein structure/function (Sup-
plementary Data 3). In addition to the KCNJ18 SV described above, two
duplications spanning the transferrin gene (TF) coding and regulatory
regionswere associatedwith higher TIBCor transferrin levels (Table 1).
Two red cell phenotype-associated deletions are predicted to impact
coding regions namely the deletion encompassing the known 3.7 kb
alpha-globin deletion which impacts the 3’ end of HBA2 and 5’ end of
HBA1 and the 19 kb deletion which comprises the SEA alpha-globin
deletion and impacts both alpha-globin genes as well as HBM
and HBQ1.

Based on functional annotation, most trait-associated SVs (N = 14)
are predicted to only impact non-coding/regulatory genomic regions
(intronic=6, intergenic=8) (Supplementary Data 3). We cross-
referenced SVs with candidate cis regulatory elements (cCREs) from
ENCODE and several annotations relevant to 3D chromosome struc-
ture (frequently interacting regions or FIREs, topologically associating
domains or TADs, super-interactive promoters or SIPs, and chromatin
interactions26–31). Annotation results show 11 trait-associated SVs
overlapped cCREs, 11 overlapped with TAD boundaries, and 3 over-
lapped with FIREs in relevant tissues/cell-types (i.e., GM12878 and
spleen) (Supplementary Data 3). Two SVs overlapped SIPs in relevant
cell-types. Chromatin interaction annotations from promoter capture
Hi-C (pcHi-C) data28 show that across 17 blood-cell-lineage cell types, 5
SVs overlap with the promoter regions of 11 genes. This includes
deletions which overlap the promoter regions for the gene HLA-DRB1
and a duplication which overlaps the promoter region of the TF gene.
pcHi-C data also show 10 SVs overlap regions that interact with the
promoters of 83 genes (Supplementary Data 3). Similarly, monocyte
Hi-C data27 show 17 SVs overlap potential regulatory regions interact-
ing with promoters of 126 genes. Altogether, non-coding, functional
annotations suggest most blood cell trait associated SVs may have an
impact on transcriptional regulation.

Fine-mapping and experimental validation of the 9q22.1 (S1PR3)
monocyte locus
In cases where fine-mapping and functional evidence is similar
between trait-associated SVs and correlated SNVs/indels, further
experimental follow-up may disentangle the causal variant. To illus-
trate thispoint, weperformed experimental follow-upon amoderately
sized deletion (602 bp) at the 9q22.1 locus. This deletion is near the
S1PR3 gene and was significantly associated with lower monocyte
count and lowermonocytepercentage (Table 1). This 9q22.1 deletion is
also in near perfect LD with a recently reported monocyte-associated
SNV (rs28450540) (Fig. 1A, Table 2) and several other SNVs, all ofwhich
are relatively specific to individuals of African ancestry (MAF =0.117).

To characterize the 9q22.1 locus, we compared the overlap
between monocyte count-associated variants with deoxyribonuclease
I (DNase I) sensitivity, an indicator of accessible chromatin. In several
cell types, such as CD34+ commonmyeloid progenitor (CMP) cells and
mesenchymal stem cells (MSCs), therewas a relative absence of DNase
I sensitivity adjacent to or overlying the 9q22.1 locus (Fig. S7A). How-
ever, in human primary CD14 +monocytes, several peaks of DNase I
hypersensitivity overlap the monocyte-associated variants (Fig. 1B).
Strikingly, the trait-associated 9q22.1 deletion (9:88923551-88924152)
strictly overlapped a DNase I hypersensitivity peak, suggestive of
regulatory potential (Fig. 1B). None of the SNVs with r2 > 0.8 with the
9q22.1 deletion directly overlappedDNase I peaks (Fig. 1B). In addition,
sequences at the DNase I peak overlapping the 9q22.1 deletion showedTa
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histone modifications consistent with an enhancer signature in CD14+

monocytes, including the presence of H3K27ac and H3K4me1 and
absence of H3K4me3 marks (Fig. 1B).

A common feature of distal regulatory elements is long-range
interaction with cognate promoters. We investigated these interac-
tions from the viewpoint of the 9q22.1 SV using Hi-C data from
monocytes and macrophages27. We observed frequent interactions
between the SV-deleted sequences and the S1PR3 promoter, which is
located in the same topologically associating domain (TAD) 67.3 kb
downstream (Fig. 1C). Reciprocally, we investigated interactions from

the viewpoint of the S1PR3 promoter. The interactions between the
S1PR3 promoter and the 9q22.1 SV reached genome-wide significance
in macrophage Hi-C data and were just below genome-wide sig-
nificance in monocyte Hi-C data (Fig. 1C and Fig. S7B). In 10 other Hi-C
datasets, including from cell types that express higher levels of S1PR3
compared to monocytes or macrophages, such as MSCs, we did not
observe significant interactions between the S1PR3 promoter and the
9q22.1 deletion (Fig. 1D). These results suggest the trait-associated
9q22.1 SV overlaps a monocyte/macrophage-specific enhancer ele-
ment that interacts with S1PR3.
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Fig. 1 | A structural variant at human 9q22.1 associated with decreased per-
ipheral monocyte count. All p-values are derived from two-sided t-tests and are
not adjusted for multiple comparisons. A Genome-wide association -log10(p-
values) for 9q22.1 variants associated with peripheralmonocyte counts. The purple
diamond represents the trait-associated deletion (9:88923551-88924152); large
circles represent other SVs; and small circles represent single nucleotide variants
(SNVs) or indels. Color indicates the linkage disequilibrium (LD) calculated in the
analysis sample set between the trait-associated deletion and individual SVs and
SNVs. B Distribution of accessible chromatin (by DNase I sequencing) and histone
modifications (H3K27ac, H3K4me1 and H3K4me3) in primary CD14 +monocytes
across indicated genomic regions from ENCODE26. C Virtual 4C plot of long-range
chromatin interactions anchored at the trait-associated, 9q22.1 deletion
(9:88923551-88924152, upper panel) and the S1PR3 promoter region (9:91605763-
91606263, lower panel), shownas a grey bar, inmacrophages. Yellow line highlights
the S1PR3 promoter region (upper panel) trait-associated, 9q22.1 deletion (lower

panel). The observed and expected chromatin contact frequencies (or counts) are
represented by the black and red lines, respectively. The left Y axis displays the
range of chromatin contact frequency. The statistical significance (–log10(P-value))
of each long-range chromatin interaction is represented by the blue line, with its
range listed in the right Y axis. The cell line or tissue specific FDR threshold (5%) is
shown as a purple horizontal dashed line, and the more stringent Bonferroni
threshold (P =0.05) is shown as a maroon horizontal dashed line. D Long-range
chromatin interaction between the trait-associated, 9q22.1 deletion and S1PR3
promoter calculated in 12 different cell types. MSC (mesendoderm), NPC (neural
progenitor cell), HC (hippocampus), H1 (human embryonic stem cells), LV (left
ventricle), PA (pancreas), SX (spleen), DLPFC (dorsolateral prefrontal cortex), LG
(lung)31, GM (lymphoblast)76, Mac (macrophages), Mon (monocytes)27. The circle
size represents the magnitude of the -log10 p-value while the color indicates S1PR3
mRNA level. TPM: transcripts per million.
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Given this regulatory potential, we investigated whether the
9q22.1 SVwas associatedwith expression changes of nearby genes.We
performed expression quantitative trait loci (eQTL) analysis on the
9q22.1 SV in the TOPMedMulti-Ethnic Study of Atherosclerosis (MESA,
using n = 169, including both African American and Hispanic/Latino
individuals). Cis-eQTL analysis in CD14 +monocyte samples, revealed
the strongest association to be between the 9q22.1 SV and S1PR3
compared to all other genes in a 2Mbwindow (Fig. 2A). Deletion of this
region is significantly associated with decreased abundance of S1PR3
(P = 5.20E-06) (Fig. 2B). Similar results were observed in peripheral
blood mononuclear cells (PBMC), but not in T cells, consistent
with a cell type-specific cis-regulatory effect on S1PR3 expression
(Figs. S8A, B).

To experimentally test the regulatory potential of the deleted
sequences, we performed CRISPRi with dCas9-KRAB in monocytic
THP-1 cells. Three sgRNAsweredesigned targetingdifferent sequences
within the 9q22.1 SV deleted segment (Fig. S8C). CRISPRi with each of
these three sgRNAs significantly reduced the expression of S1PR3 but
not other nearby genes (Fig. 2C and Fig. S8D–F). Taken together, the
results provide strong evidence that the trait-associated SV deletes a
monocyte-specific enhancer that controls the expression of S1PR3 in
monocytes.

To test the functional role of S1PR3 in monocyte maturation and
homeostasis, we edited human CD34 + hematopoietic stem and pro-
genitor cells (HSPCs) with three sgRNAs targeting S1PR3 or a sgRNA
targeting a neutral locus and performed in vitro monocyte differ-
entiation. Each of the S1PR3-targeting sgRNAs yielded highly efficient
gene edits (95.7% ± 1.9% indels) (Fig. 2D). Compared with the neutral
locus targeting control, each of the three S1PR3-edited cell populations
showed a significant decrease in CD14 +monocyte differentiation
efficiency in vitro (P <0.001) (Fig. 2E, F), suggesting monocyte differ-
entiation depends on S1PR3 expression.

Lastly, to further validate the role of S1PR3 in human hemato-
poiesis, we edited human hematopoietic stem and progenitor cells
(HSPCs) with sgRNAs targeting a neutral locus or S1PR3, and infused
the edited HSPCs into immunodeficient NBSGW mice. Human
engraftment and multiple-lineage hematopoiesis were analyzed in the
mouse bonemarrow after 12 weeks. Gene edits were 95.4% in the input
HSPC cell product for S1PR3 and remained consistent (93.7%) in
engrafting human cells (Fig. 2G). Overall human hematopoietic chi-
merism, and the fraction of lymphoid and erythroid lineage cells in the
bone marrow was similar between the neutral locus and S1PR3-tar-
geting group (Fig. 2H and Fig. S9). We observed a decrease of
CD16 + neutrophil percentage (P =0.004) and increase of CD14 +
monocyte percentage (P = 0.02) in the bone marrow of S1PR3-edited
groups (Fig. 2I, J). These results suggest that S1PR3 loss of function
leads to altered human myeloid homeostasis in vivo, consistent with a
functional role of S1PR3 in determining monocyte count.

Discussion
GWAS have identified thousands of SNVs and small indels that con-
tribute to quantitative hematologic traits but the contribution of SVs
to blood cell trait variation has mainly been limited to individuals with
rare genetic blood disorders32–34. Here we investigated the contribu-
tion of SVs to hematologic variation in ancestrally diverse TOPMed
participants. Using single variant tests, we show 21 independent SVs
were significantly associated with quantitative hematologic traits.
These trait-associated SVs ranged in size (~60 bp to >160 kb) and allele
frequency. Remarkably, most of these association signals were repli-
cated in independent datasets, suggesting that despite the known
challenges associated with SV discovery/genotyping in short-read
data6, WGS-based SV call-sets can be successfully used to study com-
plex trait variation.

Most trait-associated SVs are located in genomic regions pre-
viously associatedwith blood cell traits andmost arenot conditionally-

independent of SNV/indels at the same loci previously identified
through GWAS. One exception was a novel association between the
17p11.2 locus (KCNJ18 SV) and white blood cell-related phenotypes.
KCNJ18has no known role in leukocyte biology. It encodes a potassium
channel and variants in this gene are associated with the Mendelian
disorder, thyrotoxic hypokalemic periodic paralysis [MIM:613239].
Moreover, the trait-associated KCNJ18 SV is located in a complex
region of the genomewhich includes a segmental duplication near the
centromere of chromosome 17. Likely due to this complexity, we did
not identify a KCNJ18 SV representative in replication datasets. Based
on these results aswell as the associatedphenotypic pattern (opposing
effects onneutrophil and lymphocyteproportions) additional analyses
are required to ensure this finding reflects inherited genetic variation.

Functional annotation indicates most trait-associated SVs are
located in non-coding regions of the genome. The majority of trait-
associated SVs were predicted to impact regulatory elements or
chromatin loop structure and chromatin domain boundaries. Toge-
therwith LDand conditional analyses, this is consistentwith the notion
that SVsmayprovidemechanistic insights for a subset of knownGWAS
loci. For instance, a chr7 deletion which includes the EPO promoter
was recently shown to alter iPSC expression levels of 5 nearby genes35,
including the genes, TFR2 and EPHB4 which are involved in iron
metabolism and erythropoiesis36,37. In our analyses, this chr7 deletion
was present in TOPMed (allele frequency = 0.189) but just missed our
significance threshold for association with red cell phenotypes. Nota-
bly, in our analyses this chr7 deletion was in near perfect LD with a
previously-reported SNV chr7:100729121 (rs4729607)9.

In this study, we also identified a monocyte trait-associated SV
(602 bp, 9q22.1 deletion) that directly overlaps a monocyte cell type-
specific enhancer with accessible chromatin and enhancer signature
histone modifications. The enhancer forms a physical interaction with
the S1PR3 gene in monocytes, and the 9q22.1 SV is an eQTL for S1PR3
expression inmonocytes. By using CRISPRi targeting the enhancer, we
showed the enhancer positively regulates S1PR3 in monocyte lineage
cells. Prior GWAS have identified SNVs at this locus associated with
blood cell traits including monocyte count, but without identification
of the causal variant. This trait association represents an experimen-
tally validated example where an ancestry-specific SV appears to
underlie an SNV-tagged trait association through effects on cell-type
specific gene regulation.

Gene editing of S1PR3 significantly impacted both in vitro
monocyte maturation and monocyte homeostasis in xenograft
experiments. S1PR3, a receptor for the bioactive lipid sphingosine-1-
phosphate (S1P), is a central regulator which drives myeloid
differentiation38. Complementary to our results, previous studies have
shown that S1PR3 overexpression alone is sufficient to inducemyeloid
differentiation in human HSC38. In addition, S1PR3 has been implicated
in the mobilization from the bone marrow to the peripheral blood of
hematopoietic and mesenchymal progenitors39,40. The decreased effi-
ciency of in vitro monocyte maturation, and relative increase in the
fraction of bonemarrow CD14+ monocytes with reciprocal decrease of
bone marrow CD16+ neutrophils of engrafted mice, may suggest that
S1PR3 both plays cell autonomous roles in monocytes during
maturation as well as impacts the trafficking of myeloid cells from
bone marrow stores to circulating cells in the peripheral blood. Sup-
porting this hypothesis, S1P receptors, which are chemotactically
sensitive to S1P gradients, regulate multiple processes, including
migration, matrix adhesion, and cell-cell contact. Therefore, the steep
gradient of S1P concentration existing between bone marrow and
bloodmight promotemonocytes to navigate fromthebonemarrow to
circulation40. The biological contributions of S1PR3 to monocyte
maturation and trafficking may be complex and could merit future
dedicated study.

In summary, our results from a large ancestrally-diverse popula-
tion-based data set add further evidence that complex trait association
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Fig. 2 | Genome and epigenome editing implicates S1PR3 in the 9q22.1 mono-
cyte association. All p-values are derived from two-sided t-tests (unless otherwise
indicated) and are not adjusted for multiple comparisons. A eQTL results between
the 9q22.1 SV and genes within 1-Mb window in monocytes using data from from
MESA, including n = 77 AA and n = 92 Hispanic/Latino participants. AFHI: African
American and Hispanic/Latino. B Violin plot (with minima, maxima, median, and
inter-quartile range) demonstrating the correlation between the 9q22.1 SV geno-
type and expression of S1PR3, in n = 169 fromMESA. C Expression of genes within a
2Mb window in THP-1 cells expressing dCas9-KRAB after transduction with an
sgRNAs targeting the SV (orange) as compared to a neutral locus control sgRNA
(blue). Relative mRNA level of each gene was represented by mean ± standard
deviation (SD). N = 3 biological replicates, where each replicate is a unique cellular
transduction by sgRNA cassette. **P =0.009. Location of sgRNAs designed for
CRISPRi are indicated in Fig. S8C. D–F S1PR3 gene editing impaired monocyte
differentiation in vitro. D Editing efficiency in HSPCs following 3xNLS-
SpCas9:sgRNA electroporation with the indicated sgRNA. Gene edits were

measured after 4 days of electroporation (N = 4 biological replicates). Location of
S1PR3 coding sequence targeting sgRNAs are indicated above. E Representative
flow cytometry indicating CD13 +CD14 + cell populations from the neutral locus
and S1PR3 targeting group after 12-day differentiation. F CD13 +CD14 + percentage
in the S1PR3 targeting group and the neutral locus targeting group.N = 4 replicates
where each replicate is a unique Cas9:sgRNA electroporation experiment. Mean ±
SD, with Student’s two-sided t-test.***P <0.001, ****P <0.0001. G–J Human CD34+
HSPCs from three healthy donors were edited by Cas9 RNP electroporation (EP)
targeting a neutral locus and S1PR3 coding sequence infused intoNBSGWmice 24h
after electroporation. After 12 weeks, engrafted bonemarrowwas characterized by
immunophenotyping. G Indels determined by Sanger sequencing before trans-
plantation. (H––J) Quantification of different human cell types between the neutral
locus and S1PR3 targeting group. Human chimerism, hCD45+ ; Monocytes,
hCD45 +CD33+ SSClowCD14 + ; neutrophil, hCD45 +CD33+ SSChighCD16 + . N = 3
independent biological replicates, each replicate indicates one mouse. Mean± SD,
2-sided Mann-Whitney test. *P =0.025, **P =0.004.
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signalsmaybe explained by the presence of structural variation. These
findings complement recent WGS-based studies performed in Eur-
opean population isolates demonstrating the contribution of struc-
tural variation to complex trait variation (quantitative cardiometabolic
and anthropometric traits)5,17. Several limitations of our study should
be noted: 1) our analyses were restricted to deletions, inversions, and
duplication and 2) were restricted to autosomal structural variation.
Both of these limitations can be overcome with additional SV asso-
ciation studies that more broadly survey structural variation. In parti-
cular, the incorporation of long-read data into SV-based association
analyses will greatly improve our understanding of how SVs contribute
to hematological and complex trait variation.

Methods
TOPMed study population
We included 50,675 participants from 12 TOPMed studies: Genetics of
Cardiometabolic Health in the Amish (Amish, n = 1090)41, Athero-
sclerosis Risk in Communities Study (ARIC, n = 3717)42, Mount Sinai
BioMeBiobank (BioMe,n = 9102)43, CoronaryArteryRiskDevelopment
in Young Adults (CARDIA, n = 2966)44, Cardiovascular Health Study
(CHS, n = 3478)45 Genetic Epidemiology of COPD Study (COPDGene,
n = 5595)46, FraminghamHeart Study (FHS,n = 2760)47, Genetic Studies
of Atherosclerosis Risk (GeneSTAR, n = 1494)48, Hispanic Community
Health Study - Study of Latinos (HCHS_SOL, n = 3824)49, Jackson Heart
Study (JHS, n = 3329)50,51, Multi-Ethnic Study of Atherosclerosis (MESA,
n = 2516)52, and Women’s Health Initiative (WHI, n = 10,804)53. The
50,675 TOPMed participants were categorized into discrete ancestry
subgroups using a machine learning algorithm, which uses genetically
inferred ancestry to refine self-identified ancestry and impute missing
values54 (see SupplementalMethods). The ancestry composition in this
study was 59% European, 24% African, 16% Hispanic/Latino, and 1%
Asian (Supplementary Data 1). Only samples with a missingness rate
<10% in the structural variant datasetwere included in analysis. Further
descriptions of the design of the participating TOPMed cohorts and
the sampling of individuals within each cohort for TOPMed WGS are
provided in the section “Participating TOPMed studies” under Sup-
plemental Methods. All studies were approved by the appropriate
institutional review boards (IRBs) and informed consent was obtained
from all participants.

Blood cell trait measurements
Red blood cell, white blood cell and platelet quantitative traits were
measured from freshly collected whole blood samples using auto-
mated hematology analyzers according to clinical laboratory stan-
dards. In studies where multiple blood cell measurements per
participant were available, we selected a single measurement for each
trait and eachparticipant. Each traitwasdefined as follows: Hematocrit
(HCT) is the percentage of volume of blood that is composed of red
blood cells. Hemoglobin (HGB) is the mass per volume (grams per
deciliter) of hemoglobin in the blood. Mean corpuscular hemoglobin
(MCH) is the average mass in picograms of hemoglobin per red blood
cell. Mean corpuscular hemoglobin concentration (MCHC) is the
average mass concentration (grams per deciliter) of hemoglobin per
red blood cell. Mean corpuscular volume (MCV) is the average volume
of red blood cells, measured in femtoliters (fL). RBC count is the count
of red blood cells in the blood, by number concentration in millions
per microliter. Red cell distribution width (RDW) is the measurement
of the ratio of variation inwidth to themeanwidth of the redblood cell
volume distribution curve taken at + /− one CV. Total white blood cell
count (WBC), neutrophil, monocyte, lymphocyte, eosinophil, basophil
and platelet count are defined with respect to cell concentration in
blood, measured in thousands/microliter. The proportion of neu-
trophils, monocytes, lymphocytes, or eosinophils were calculated by
dividing the respective WBC sub-type count by the total measured
WBC. Mean platelet volume (MPV) was measured in fL. For each trait,

we identified extreme values that may represent measurement or
recording errors or hematologic malignancies and removed them
from the analysis.

In a subset of samples from the JHS and HCHS/SOL studies, we
evaluated four iron-related phenotypes: serum iron, total iron binding
capacity (TIBC), transferrin saturation, and ferritin. Serum iron (μg/dl)
was measured by colorimetric assay using a ferrozine reagent (Roche
Diagnostics, Indianapolis, IN). Unsaturated iron binding capacity
(UIBC) was assayed by colorimetric assay on the same sample, TIBC
(μg/dl) was calculated by the formula: TIBC= serum iron + UIBC.
Serum ferritin (ng/ml) was measured with Roche reagents using a
particle enhanced immunoturbidimetric assay. Transferrin saturation
(%) was calculated by the formula: SAT = serum iron/TIBC x 100.

WGS data and quality control in TOPMed
WGSwasperformed through theNHLBI TOPMedprogramongenomic
DNA isolated fromperipheral blood.WGSwas generated to an average
depth of 38X by six sequencing centers (Broad Genomics, Northwest
Genomics Center, Illumina, New York Genome Center, Baylor, and
McDonnell Genome Institute)55. Most WGS was performed using PCR-
free library preparation, Illumina HiSeq X Ten or NovaSeq instruments
and 150 bp paired end reads. Sequencing reads were aligned to the
human reference genome (GRCh38) by the TOPMed Informatics
Research Center (IRC) using the read mapping pipeline described in
Regier, A. et al.56.

Single nucleotide variant and small indel discovery and geno-
typing in TOPMed
We utilized the TOPMed freeze 8 genotype call set produced by the
IRC as previously described56. Briefly, SNVs and indels were discovered
on a per sample basis, then merged and genotyped across samples.
SNV and indel quality control (QC), was performed by calculating
Mendelian consistency scores and by applying a support vector
machine (SVM) classifier trained on known variant sites andMendelian
inconsistencies. SNV- and indel-based, sample QC measures included:
concordance between annotated and inferred genetic sex, con-
cordance between prior array genotype data and TOPMed WGS data,
and pedigree checks. Further details regarding data processing, and
quality control are described on the TOPMed website (https://www.
nhlbiwgs.org/topmed-whole-genome-sequencing-methods-freeze-8)
and in a common document accompanying each TOPMed study’s
dbGaP accession.

Structural variant discovery and genotyping in TOPMed
We utilized the TOPMed SV freeze 1.0 call set, which contains 138,134
TOPMed samples. Briefly, SV calls were assessed from each sample
separately using Parliament2 pipeline15. The Parliament2 pipeline
provides the union of SV calls from six different programs: Break-
Dancer, BreakSeq, CNVnator, Delly, Lumpy and Manta. SV calls were
merged across samples using survivor57 and filtered using SVTyper58.
Sample genotypes for each variantwere assessed usingmuCNV16. After
final filtering, the TOPMed SV freeze 1.0 call set consists of a total of
466,455autosomal SV sites: 231,817 deletions, 197,412duplications and
37,226 inversions. Of these, 96,049 had MAC>= 5 in at least one trait
andwere included in association analyses. For association analysis, the
genotypes of each SV were represented in a bi-allelic genotype format
(GT=0/0, 0/1, 1/1), similar to SNVs and small indels generated from the
same WGS data.

Single variant association analysis of SVs and blood cell traits
using linear mixed models
Single variant SV association tests for all variants with aminor allele
count (MAC) ≥ 5 were performed for each blood cell trait using a
two-stage linear mixed model (LMM) approach implemented in the
GENESIS software59,60. In the first stage, a null model assuming no

Article https://doi.org/10.1038/s41467-022-35354-7

Nature Communications |         (2022) 13:7592 11

https://www.nhlbiwgs.org/topmed-whole-genome-sequencing-methods-freeze-8
https://www.nhlbiwgs.org/topmed-whole-genome-sequencing-methods-freeze-8


association between the outcome and any SV was fit, adjusting for
the fixed effect covariates of: age at trait measurement; sex; a
variable indicating TOPMed study and study phase (study_phase);
indicators for stroke, COPD, and VTE; the first 11 PC-AiR61 principal
components (PCs) of genetic ancestry as estimated from the WGS
SNV/indel genotypes. We additionally included as fixed effect
covariates, the first 10 principal components estimated from read
depth (“batch PCs”). To calculate batch PCs, we first computed the
average sequencing depth for every 1 kb genomic region (“bin”)
across the 22 autosomes62. We removed bins containing repetitive
sequences with poor mappability (<1.0 using 50 bp k-mers in
GEMTools v1.759) or sequences overlapping known CNVs in the
Database of Genomic Variants. Following normalization of the
approximately 150,000 remaining bins, we performed Rando-
mized Singular Value Decomposition (rSVD)63, to generate batch
PCs, which were used to correct for batch and technical artifacts
arising from the sequencing process.

In the first-stage null model, a 4th degree sparse empirical kinship
matrix (KM) computed with PC-Relate64 was included to account for
genetic relatedness among participants. To control genomic inflation,
we additionally allowed for heterogeneous residual variances by study
and ancestry group. Details on how ancestry groups were estimated
for this adjustment are in the supplemental methods. Following fitting
of the first-stage null model, we performed a rank-based inverse-nor-
mal transformation of the marginal residuals, and subsequently
rescaled the residuals by their variance prior to transformation. This
rescaling allows for clearer interpretation of estimated SV genotypic
effect sizes from the subsequent association tests. In the second stage,
we fit another LMM using the rank-normalized and rescaled residuals
as the outcome, with the same fixed effect covariates, sparse KM, and
heterogeneous residual variancemodel as in Stage 1. The output of the
Stage 2 null model was then used to perform genome-wide score tests
of genetic association for all SVs that passed the TOPMed SV quality
filters and with a minor allele count (MAC) ≥ 5. Missing SV genotype
calls were imputed to the mean before performing the association
tests. Investigation of QQ plots stratified by MAC showed similar test
behavior at all MAC bins (Fig. S2). The total number of unique SVs
tested across all traits was 96,049.

Basophils was tested as a binary outcome (basophil count > 0), so
the null model was fit as a logistic mixed model using the GMMAT
method as implemented inGENESIS, rather than a two-stage LMM. The
same fixed effect covariates and sparse KM were used in the null
model, and score tests were used for association. Genome-wide sig-
nificancewasdefined as 5.0 × 10−8 for common variants (MAF > 1%) and
8.0 × 10−9 for rare variants (MAF < = 1%)65.

Visualization of SVs associated with blood cell traits
For SVs significantly associated with blood cell traits, we performed
additional quality control by visualizing aligned WGS reads in variant
samples. Visualization was performed using samplot on the NHLBI
Biodata Catalyst cloud computing platform (https://doi.org/10.5281/
zenodo.3822858). For each SV event, we visualized aligned reads for
multiple samples and excluded any SV events that were not clearly
supported by the aligned WGS data. Additionally, we selected SV
events in instances where Parliament2 identified multiple overlapping
SVs by different SV calling algorithms. This was concluded following
data visualization and we selected SVs based on the resolution of
predicted Parliament2 breakpoints.

Replication of trait-associated SVs using deCODE genetics and
UK Biobank datasets
We performed replication analyses for each TOPMed SV-blood cell
trait association signal using deCODE genetics and UKBB datasets.
Briefly, SVs were called in Icelanders (deCODE genetics) using 49,962
short-read18,19 and 3622 long-read sequenced17 individuals. These data

were phased and all genotyped variants were imputed into 166,281
individuals using a previously described methodology66,67. SVs were
called from 150,119 short-read sequenced individuals in UKBB. Three
cohorts were used in UKBB with 132,169, 2963, and 3047 sequenced
and 431,805, 9633, and 9252 imputed individuals, in British/Irish (XBI),
African (XAF) and South Asian (XSA) populations, respectively20. For
replication analyses, we defined an SV in replication datasets to
represent a TOPMed SV, if locatedwithin 5 kb of the TOPMed SV and if
the two SV sizes overlapped by at least 25%. We considered SVs as
representative if they were the same structural variant type (e.g. both
SVs were deletions) and had similar minor allele frequencies in the
relevant population. We tested for association for all representative
SVs and their corresponding phenotypes based on the linear
mixed model implemented in BOLT-LMM68 and described in17,20.
We considered an association to be replicated if at least one of the
p-values from thedeCODE,UKBBBritish, UKBBAfrican, orUKBBSouth
Asian cohorts was < 0.05/(number of its representative SVs in given
dataset).

Functional annotation of SVs
We annotated genome sequence information for SVs significantly
associated with blood cell traits using AnnoSV69. From AnnoSV, we
ascertained gene annotations (based on RefSeq, ENSEMBL), the pre-
sence of similar SVs in genomic databases (e.g., DGV) and breakpoint
information including overlapwith repetitive elements. To understand
the potential impact of trait-associated SVs on non-coding/regulatory
regions, we cross-referenced SVs with five different genomic annota-
tions including, frequently interacting regions (FIREs) from Hi-C
data30,31, topologically associating domain (TAD) boundaries, cell-
type specific regulatory networks from super interactive promoters
(SIPs)29, candidate cis regulatory elements (cCREs) from ENCODE, and
chromatin interaction information from chromatin conformation data
including Hi-C27 and promoter capture Hi-C (pcHi-C)28.

Linkage disequilibrium and conditional analyses for trait-
associated SVs
For each blood cell trait, we performed conditional association ana-
lyses to determine which genome-wide significant SVs remained sig-
nificant following adjustment for (1) previously reported GWAS
variants and (2) SNV and small indels previously detected in
TOPMed21–23. To address the first question, we used variants detected
in multi-ancestry and European populations reported in Chen et al.
2020 and Vuckovic et al. 20209,10. The genome-wide significant var-
iants from Chen et al. 2020 and Vuckovic et al. 2020 were matched to
TOPMedSNVs and small indels that passed the IRCquality filters based
on chromosome, position, and alleles. For each trait, the set of mat-
ched variants on each chromosome was then LD-pruned at r2 = 0.8 in
the sample set of the non-conditional analysis for that trait, pre-
ferentially keeping variantswith lower p-values in the TOPMed analysis
sample set. Switching the LD threshold to r2 = 0.999 for pruning pro-
duced very similar p-values and did not add or remove any significant
loci. This pruned set of variants were combined across chromosomes
and included asfixed effect covariates in the nullmodel using the same
fully-adjusted two-stage LMMassociation testing procedure described
above59,60.To identify SVs independent of GWAS variants detected in
the TOPMed data, we used a similar procedure, starting with any SNV
or small indels with P < 5.0 × 10−8 in single variant association tests
using the same sample set for the trait. This set of variants was then LD-
pruned at r2 = 0.8, again preferentially keeping variants with lower p-
values, and included as fixed effects in a two-stage LMM association
testing59,60.

To investigate the proportion of SVs in LDwith known, blood-cell
trait SNVs/indels, we additionally calculated LD (r2) for genotypes of
6652 previously-reported SNVs/indels from European ancestry
samples10 and SVs with MAC ≥ 5 on the same chromosome. Only
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TOPMed participants with inferred European ancestry (N = 29,244)
were used for the LD calculation. Each SNV/indel was then matched to
the SV with the highest r2 value.

eQTL analysis
RNA-sequencing (RNA-seq) data for eQTL analysis were derived from a
subsample of African American and Hispanic/Latino TOPMed MESA
cohort participants using blood samples derived from either MESA
exam 1 (2000-2002) or MESA exam 5 (2010-2012) as previously
described70. RNA sequencing was performed on peripheral blood
mononuclear cells (PBMC) from 297 African American and 246 His-
panic/Latino MESA participants at exam 1 and from isolated mono-
cytes and T lymphocytes from 77 African American and 92 Hispanic/
Latino MESA participants at exam 5 RNA-seq data was processed fol-
lowing the TOPMed harmonized RNA-seq pipeline. Specifically, gene-
level expression was quantified by RSEM v1.3.0. We performed cis-
eQTLanalysis (± 1Mb) to identify geneswhoseexpression is associated
with 9q22.1 SV using Matrix eQTL71.

Hematopoietic cell lines
THP-1 cells (Cat# TIB-202) were obtained from the American Type
Culture Collection and cultured in RPMI 1640 (Thermo Fisher Scien-
tific, USA). To make the complete growth medium, the following
components were added: 2-mercaptoethanol (Cat# 21985-023,
Thermo Fisher Scientific) to a final concentration of 0.05mM; fetal
bovine serum (Cytiva) to a final concentration of 10%.

Primary hematopoietic cells and monocyte-macrophage
differentiation
Human CD34+ HSPCs frommobilized peripheral blood of deidentified
healthy donors were purchased from Fred Hutchinson Cancer
Research Center, Seattle, Washington. CD34+ HSPCs were cultured in
StemSpan SFEM medium (Cat# 09650, STEMCELL Technologies)
supplemented with 1x StemSpan CD34+ expansion supplement (Cat#
02691, STEMCELL Technology). To induce monocyte-macrophage
differentiation from CD34+ HSPCs, the cytokine cocktail of M-CSF
30ng/mL, FLT3-Ligand 100ng/mL, SCF 50ng/ml, IL-3 5 ng/mL, IL-6
3 ng/ul and L-Glutamine 2mMwas supplemented to the culturemedia
for 11 days before analysis. GM-CSF 5 ng/ml was supplemented in the
culture media for the first 4 days. All cytokines of human origin and
from PeproTech.

CRISPR/Cas9 guide design, cloning, lentiviral vector production
and transduction and 3xNLS-SpCas9 preparation
Streptococcus pyogenes Cas9 (SpCas9) guide RNAs that either target
S1PR3 coding sequence or bind near the structural deletion
(9:88923551-8892452) were identified using computational algorithms
with prioritization for on-target efficiency and reduced off-target
effects (CRISPOR: http://crispor.tefor.net/). For RNP experiments, the
chemically modified sgRNAs were synthesized by Integrated DNA
Technologies. SpCas9 proteins were expressed and purified as pre-
viously described72.

For CRISPRi experiments, oligos (from GENEWIZ company) were
annealed and ligated into LentiGuide-Puro (Addgene, Cat#52963).
Following lentiviral production and transduction into THP-1 cell lines
with stable dCas9-KRAB expression (Addgene, Cat#89567), 10μg/ml
blasticidin and 1μg/ml puromycin were added to select for sgRNA
expression in cells with stable dCas9-KRAB expression. The sequence
of sgRNAs are summarized in Supplementary Data 4.

CRISPR-Cas9 genome editing in CD34+ HSPCs and THP-1 cells
CD34+ HSPCs and THP-1 cells were maintained in their favorable
medium (see before) 24 h before electroporation. Approximately
100,000 cells per condition were electroporated using the Lonza 4D
nucleofector with 100pmol 3xNLS-SpCas9 protein and 300 pmol

modified sgRNA targeting the locus of interest. In addition to mock
treated cells, “safe-targeting”RNPswere used as experimental controls
as indicated in each figure legend73. After electroporation, cells were
induced for monocyte-macrophage differentiation as described pre-
viously. Genomic DNA was isolated from an aliquot of cells, the sgRNA
targeted locus was amplified by PCR which was subject to Sanger
sequencing and then TIDE analysis to quantify indel spectrum at day 4
after electroporation.

Determination of target gene expression
TotalRNAwasextracted fromcell cultures 4days after electroporation
using the RNeasy PlusMini Kit (QIAGEN) and reverse transcribed using
the iScript cDNAsynthesis kit (Biorad) according to themanufacturer’s
instructions. Expression of target genes was quantified using real-time
RT-qPCR with GAPDH as an internal control. All gene expression data
represent the mean of at least three biological replicates. Primers for
PCR are summarized in Supplementary Data 5. Since PCR primers
could not be designed for RP5-1050E16.1, this gene was excluded from
further analysis.

Flow cytometry analysis
For analysis of surfacemarkers, cells were stained in PBS containing 2%
(w/v) BSA, with the following antibodies (from Biolegend): anti-human
CD34 (clone 581, Cat# 343504, 1:200), anti-human CD33 (clone P67.6,
Cat# 366608, 1:200), anti-human CD117 (clone 104D2, Cat# 313205,
1:200), anti-human CD16 (clone 3G8, Cat# 302046, 1:100), anti-human
CD14 (clone 63D3, Cat# 367117, 1:200). Monocyte and macrophage
were indicated by anti-human CD14+. Flow cytometry data were
acquired on a LSRII or LSR Fortessa (BD Biosciences) and analyzed
using FlowJo software (Tree Star).

Immunophenotyping of human CD34+ HSPCs xenograft from
NBSGW mice
NOD.Cg-KitW-41J Tyr þ Prkdcscid Il2rgtm1Wjl (NBSGW) mice were
obtained from Jackson Laboratory (Stock 026622) and kept in 12 h of
light at room temperature. CD34+ HSPCs were maintained and edited
as described above. Cells were allowed to recover for 24 h after elec-
troporation, and then infused by retro-orbital injection into non-
irradiated NBSGW female mice. Bone marrow was isolated for human
xenograft analysis 16 weeks after human CD34+ HSPCs engraftment.
For flow cytometry analysis, bone marrow cells were first incubated
with Human TruStain FcX (BioLegend, Cat# 422302) and TruStainfcX
(anti-mouse CD16/32, 101320, BioLegend) blocking antibodies for
10min and then stained withmarker panels designed formulti-lineage
analysis. The following antibodies were used: From BD: anti-mouse
CD45 (clone 30-F11, Cat# 561487, 1:100), anti-humanCD45 (cloneHI30,
Cat# 560367, 1:200) From BioLegend: anti-human CD34 (clone 581,
Cat# 343504, 1:200), anti-human CD33 (clone P67.6, Cat# 366608,
1:200), anti-human CD117 (clone 104D2, Cat# 313205, 1:200), anti-
humanCD16 (clone 3G8, Cat# 302046, 1:100), anti-humanCD14 (clone
63D3, Cat# 367117, 1:200), anti-human CD235a (clone HI264, Cat#
349104, 1:100), anti-human CD3 (clone UCHT1, Cat# 300412, 1:200),
anti-human CD19 (clone HIB19, Cat# 302212, 1:200), and Fixable Via-
bility Dye eFluor 780 for live/dead staining (65-0865-14, Thermo
Fisher, 1:10000). Percentage human engraftment was calculated as
hCD45+ cells/(hCD45+ + mCD45+ cells). The mouse work was per-
formed, following Boston Children’s Hospital institutional review
board (IRB) approval.

DNase I-sequencing, chromatin, and Hi-C datasets
DNase I-sequencing and histone modification datasets, including
H3K27ac, H3K4me1 and H3K4me3, were downloaded from the
ENCODE project26, and were then analyzed using WashU Epigenome
Browser online software74. In situ Hi-C maps of DNA interactions in
humanmonocytes andmacrophages were previously described27, and
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visualized by HUGIn2 (Hi-C Unifying Genomic Interrogator, http://
hugin2.genetics.unc.edu/Project/hugin/)75.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data for each participating study can be accessed through dbGaP with
the corresponding accession numbers (Amish, phs000956; ARIC,
phs001211; BioMe, phs001644; CARDIA, phs001612; CHS, phs001368;
COPDGene, phs000951; FHS, phs000974; GeneSTAR, phs001218;
HCHS/SOL, phs001395; JHS, phs000964; MESA, phs001416; WHI,
phs001237).

Code availability
Code to implement the associations analyses is available on GitHub at
https://github.com/UW-GAC/analysis_pipeline.
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