1,598 research outputs found
mTORC2 signaling drives the development and progression of pancreatic cancer
mTOR signaling controls several critical cellular functions and is deregulated in many cancers, including pancreatic cancer. To date, most efforts have focused on inhibiting the mTORC1 complex. However, clinical trials of mTORC1 inhibitors in pancreatic cancer have failed, raising questions about this therapeutic approach. We employed a genetic approach to delete the obligate mTORC2 subunit Rictor and identified the critical times during which tumorigenesis requires mTORC2 signaling. Rictor deletion resulted in profoundly delayed tumorigenesis. Whereas previous studies showed most pancreatic tumors were insensitive to rapamycin, treatment with a dual mTORC1/2 inhibitor strongly suppressed tumorigenesis. In late-stage tumor-bearing mice, combined mTORC1/2 and PI3K inhibition significantly increased survival. Thus, targeting mTOR may be a potential therapeutic strategy in pancreatic cancer
Testing "microscopic" theories of glass-forming liquids
We assess the validity of "microscopic" approaches of glass-forming liquids
based on the sole k nowledge of the static pair density correlations. To do so
we apply them to a benchmark provided by two liquid models that share very
similar static pair density correlation functions while disp laying distinct
temperature evolutions of their relaxation times. We find that the approaches
are unsuccessful in describing the difference in the dynamical behavior of the
two models. Our study is not exhausti ve, and we have not tested the effect of
adding corrections by including for instance three-body density correlations.
Yet, our results appear strong enough to challenge the claim that the slowd own
of relaxation in glass-forming liquids, for which it is well established that
the changes of the static structure factor with temperature are small, can be
explained by "microscopic" appr oaches only requiring the static pair density
correlations as nontrivial input.Comment: 10 pages, 7 figs; Accepted to EPJE Special Issue on The Physics of
Glasses. Arxiv version contains an addendum to the appendix which does not
appear in published versio
Softening the Supersymmetric Flavor Problem in Orbifold GUTs
The infra-red attractive force of the bulk gauge interactions is applied to
soften the supersymmetric flavor problem in the orbifold SU(5) GUT of Kawamura.
Then this force aligns in the infra-red regime the soft supersymmetry breaking
terms out of their anarchical disorder at a fundamental scale, in such a way
that flavor-changing neutral currents as well as dangerous CP-violating phases
are suppressed at low energies. It is found that this dynamical alignment is
sufficiently good compared with the current experimental bounds, as long as the
diagonalization matrices of the Yukawa couplings are CKM-like.Comment: 15 pages,4 figure
Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Lepton + Jets Events with Lifetime b-tagging
We present a measurement of the top quark pair () production cross
section () in collisions at TeV
using 230 pb of data collected by the D0 experiment at the Fermilab
Tevatron Collider. We select events with one charged lepton (electron or muon),
missing transverse energy, and jets in the final state. We employ
lifetime-based b-jet identification techniques to further enhance the
purity of the selected sample. For a top quark mass of 175 GeV, we
measure pb, in
agreement with the standard model expectation.Comment: 7 pages, 2 figures, 3 tables Submitted to Phys.Rev.Let
A Model for the Development of the Rhizobial and Arbuscular Mycorrhizal Symbioses in Legumes and Its Use to Understand the Roles of Ethylene in the Establishment of these two Symbioses
We propose a model depicting the development of nodulation and arbuscular mycorrhizae. Both processes are dissected into many steps, using Pisum sativum L. nodulation mutants as a guideline. For nodulation, we distinguish two main developmental programs, one epidermal and one cortical. Whereas Nod factors alone affect the cortical program, bacteria are required to trigger the epidermal events. We propose that the two programs of the rhizobial symbiosis evolved separately and that, over time, they came to function together. The distinction between these two programs does not exist for arbuscular mycorrhizae development despite events occurring in both root tissues. Mutations that affect both symbioses are restricted to the epidermal program. We propose here sites of action and potential roles for ethylene during the formation of the two symbioses with a specific hypothesis for nodule organogenesis. Assuming the epidermis does not make ethylene, the microsymbionts probably first encounter a regulatory level of ethylene at the epidermis–outermost cortical cell layer interface. Depending on the hormone concentrations there, infection will either progress or be blocked. In the former case, ethylene affects the cortex cytoskeleton, allowing reorganization that facilitates infection; in the latter case, ethylene acts on several enzymes that interfere with infection thread growth, causing it to abort. Throughout this review, the difficulty of generalizing the roles of ethylene is emphasized and numerous examples are given to demonstrate the diversity that exists in plants
b-Jet Identification in the D0 Experiment
Algorithms distinguishing jets originating from b quarks from other jet
flavors are important tools in the physics program of the D0 experiment at the
Fermilab Tevatron p-pbar collider. This article describes the methods that have
been used to identify b-quark jets, exploiting in particular the long lifetimes
of b-flavored hadrons, and the calibration of the performance of these
algorithms based on collider data.Comment: submitted to Nuclear Instruments and Methods in Physics Research
Multiwavelength studies of MHD waves in the solar chromosphere: An overview of recent results
The chromosphere is a thin layer of the solar atmosphere that bridges the
relatively cool photosphere and the intensely heated transition region and
corona. Compressible and incompressible waves propagating through the
chromosphere can supply significant amounts of energy to the interface region
and corona. In recent years an abundance of high-resolution observations from
state-of-the-art facilities have provided new and exciting ways of
disentangling the characteristics of oscillatory phenomena propagating through
the dynamic chromosphere. Coupled with rapid advancements in
magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly
investigate the role waves play in supplying energy to sustain chromospheric
and coronal heating. Here, we review the recent progress made in
characterising, categorising and interpreting oscillations manifesting in the
solar chromosphere, with an impetus placed on their intrinsic energetics.Comment: 48 pages, 25 figures, accepted into Space Science Review
Hadron Polarizabilities and Form Factors
This is the summary of the working group on Hadron Polarizabilities and Form
Factors of the Chiral Dynamics Workshop in Mainz, September 1-5, 1997.Comment: 21 pages LaTeX2e, uses epsf, 9 fig
- …
