77 research outputs found

    Reputation in European Trade Mark Law: A Re-examination

    Get PDF
    Under the harmonised European trade mark regime marks with a reputation enjoy expanded protection. This article casts doubt on whether this ‘reputational trigger’ can be justified. It then explores some difficult operational questions about the way the reputation threshold works in cases where the mark enjoys fame only in niche markets or in a limited geographical area, the aim being to illustrate further why reputation is an unsatisfactory trigger for a different type of trade mark protection. Finally, it looks at some of the evidential difficulties involved in adjudicating disputes in which expanded protection is being claimed. It concludes by suggesting that if the evidential problems we identify were tackled the reputation threshold could be abandoned

    Economic Impacts of Non-Native Forest Insects in the Continental United States

    Get PDF
    Reliable estimates of the impacts and costs of biological invasions are critical to developing credible management, trade and regulatory policies. Worldwide, forests and urban trees provide important ecosystem services as well as economic and social benefits, but are threatened by non-native insects. More than 450 non-native forest insects are established in the United States but estimates of broad-scale economic impacts associated with these species are largely unavailable. We developed a novel modeling approach that maximizes the use of available data, accounts for multiple sources of uncertainty, and provides cost estimates for three major feeding guilds of non-native forest insects. For each guild, we calculated the economic damages for five cost categories and we estimated the probability of future introductions of damaging pests. We found that costs are largely borne by homeowners and municipal governments. Wood- and phloem-boring insects are anticipated to cause the largest economic impacts by annually inducing nearly 1.7billioninlocalgovernmentexpendituresandapproximately1.7 billion in local government expenditures and approximately 830 million in lost residential property values. Given observations of new species, there is a 32% chance that another highly destructive borer species will invade the U.S. in the next 10 years. Our damage estimates provide a crucial but previously missing component of cost-benefit analyses to evaluate policies and management options intended to reduce species introductions. The modeling approach we developed is highly flexible and could be similarly employed to estimate damages in other countries or natural resource sectors

    Tidal dynamics in the Gulf of Maine and New England Shelf : an application of FVCOM

    Get PDF
    Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): C12010, doi:10.1029/2011JC007054.The unstructured-grid, Finite-Volume Community Ocean Model (FVCOM) was used to simulate the tides in the Gulf of Maine (GoM) and New England Shelf (NES) for homogeneous and summer stratified conditions. FVCOM captures the near-resonant nature of the semidiurnal tide and energy flux in the GoM and the complex dynamics governing the tide in the NES. Stratification has limited impact on tidal elevation, but can significantly modify the tidal current profile. Internal tides are energetic in the stratified regions over steep bottom topography, but their contribution to the total tidal energy flux is only significant over the northeast flank of Georges Bank. The model suggests that the tidal flushing-induced eddy east of Monomoy Island is the dynamic basis for the locally observed phase lead of the M2 tide. The southward propagating tidal wave east of Cape Cod encounters the northeastward propagating tidal wave from the NES south of Nantucket Island, forming a zone of minimum sea level along a southeast-oriented line from Nantucket Island. These two waves are characterized by linear dynamics in which bottom friction and advection are negligible in the momentum balance, but their superposition leads to a strong nonlinear current interaction and large bottom stress in the zone of lowest sea elevation.This research is supported by the U.S. GLOBEC Northwest Atlantic/Georges Bank Program NSF (OCE-0234545, 0227679, 0606928, 0726851 and 0814505) to Changsheng Chen and Qixchun Xu and NSF grant (OCE-02-27679) and the WHOI Smith Chair to Robert Beardsley and Richard Limeburner. The tidal model-data comparison on Nantucket Sound/Shoals is partially the result of research sponsored by the MIT Sea Grant College Program, under NOAA grant NA06OAR4170019, MIT SG project 2006-R/RC-102, 2006-R/RC-103, 2006-R/RC-102, 2006-R/RC-107, 2008-R/RC-107), 2010-R/RC-116 and the NOAA NERACOOS Program for the UMASS team. C. Chen’s contribution is also supported by Shanghai Ocean University International Cooperation Program (A-2302-11-0003), the Program of Science and Technology Commission of Shanghai Municipality (09320503700), the Leading Academic Discipline Project of Shanghai Municipal Education Commission (project J50702), and Zhi jiang Scholar and 111 project funds of the State Key Laboratory for Estuarine and Coastal Research, East China Normal University (ECNU).2012-06-1

    High Connectivity in the Deepwater Snapper Pristipomoides filamentosus (Lutjanidae) across the Indo-Pacific with Isolation of the Hawaiian Archipelago

    Get PDF
    In the tropical Indo-Pacific, most phylogeographic studies have focused on the shallow-water taxa that inhabit reefs to approximately 30 m depth. Little is known about the large predatory fishes, primarily snappers (subfamily Etelinae) and groupers (subfamily Epinephelinae) that occur at 100–400 m. These long-lived, slow-growing species support fisheries across the Indo-Pacific, yet no comprehensive genetic surveys within this group have been conducted. Here we contribute the first range-wide survey of a deepwater Indo-Pacific snapper, Pristipomoides filamentosus, with special focus on Hawai'i. We applied mtDNA cytochrome b and 11 microsatellite loci to 26 samples (N = 1,222) collected across 17,000 km from Hawai'i to the western Indian Ocean. Results indicate that P. filamentosus is a highly dispersive species with low but significant population structure (mtDNA ΦST = 0.029, microsatellite FST = 0.029) due entirely to the isolation of Hawai'i. No population structure was detected across 14,000 km of the Indo-Pacific from Tonga in the Central Pacific to the Seychelles in the western Indian Ocean, a pattern rarely observed in reef species. Despite a long pelagic phase (60–180 days), interisland dispersal as adults, and extensive gene flow across the Indo-Pacific, P. filamentosus is unable to maintain population connectivity with Hawai'i. Coalescent analyses indicate that P. filamentosus may have colonized Hawai'i 26 K–52 K y ago against prevailing currents, with dispersal away from Hawai'i dominating migration estimates. P. filamentosus harbors low genetic diversity in Hawai'i, a common pattern in marine fishes, and our data indicate a single archipelago-wide stock. However, like the Hawaiian Grouper, Hyporthodus quernus, this snapper had several significant pairwise comparisons (FST) clustered around the middle of the archipelago (St. Rogatien, Brooks Banks, Gardner) indicating that this region may be isolated or (more likely) receives input from Johnston Atoll to the south

    METACOHORTS for the study of vascular disease and its contribution to cognitive decline and neurodegeneration: an initiative of the Joint Programme for Neurodegenerative Disease Research

    Get PDF
    Dementia is a global problem and major target for health care providers. Although up to 45% of cases are primarily or partly due to cerebrovascular disease, little is known of these mechanisms or treatments because most dementia research still focuses on pure Alzheimer's disease. An improved understanding of the vascular contributions to neurodegeneration and dementia, particularly by small vessel disease, is hampered by imprecise data, including the incidence and prevalence of symptomatic and clinically “silent” cerebrovascular disease, long-term outcomes (cognitive, stroke, or functional), and risk factors. New large collaborative studies with long follow-up are expensive and time consuming, yet substantial data to advance the field are available. In an initiative funded by the Joint Programme for Neurodegenerative Disease Research, 55 international experts surveyed and assessed available data, starting with European cohorts, to promote data sharing to advance understanding of how vascular disease affects brain structure and function, optimize methods for cerebrovascular disease in neurodegeneration research, and focus future research on gaps in knowledge. Here, we summarize the results and recommendations from this initiative. We identified data from over 90 studies, including over 660,000 participants, many being additional to neurodegeneration data initiatives. The enthusiastic response means that cohorts from North America, Australasia, and the Asia Pacific Region are included, creating a truly global, collaborative, data sharing platform, linked to major national dementia initiatives. Furthermore, the revised World Health Organization International Classification of Diseases version 11 should facilitate recognition of vascular-related brain damage by creating one category for all cerebrovascular disease presentations and thus accelerate identification of targets for dementia prevention

    The Marshall Grazing Incidence X-ray Spectrometer (MaGIXS)

    Get PDF
    The Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) is a sounding rocket instrument that flew on July 30, 2021 from the White Sands Missile Range, NM. The instrument was designed to address specific science questions that require differential emission measures of the solar soft X-ray spectrum from 6 – 25[Formula: see text]Å(0.5 – 2.1[Formula: see text]keV). MaGIXS comprises a Wolter-I telescope, a slit-jaw imaging system, an identical pair of grazing incidence paraboloid mirrors, a planar grating and a CCD camera. While implementing this design, some limitations were encountered in the production of the X-ray mirrors, which ended up as a catalyst for the development of a deterministic polishing approach and an improved meteorological technique that utilizes a computer-generated hologram (CGH). The opto-mechanical design approach addressed the need to have adjustable and highly repeatable interfaces to allow for the complex alignment between the optical sub-assemblies. The alignment techniques employed when mounting the mirrors and throughout instrument integration and end-to-end testing are discussed. Also presented are spatial resolution measurements of the end-to-end point-spread-function that were obtained during testing in the X-ray Cryogenic Facility (XRCF) at NASA Marshall Space Flight Center. Lastly, unresolved issues and off-nominal performance are discussed
    corecore