895 research outputs found
Modelling the supernova-driven ISM in different environments
We use hydrodynamical simulations in a (256 pc)3 periodic box to model the impact of supernova (SN) explosions on the multiphase interstellar medium (ISM) for initial densities n=0.5-30cm−3 and SN rates 1-720Myr−1. We include radiative cooling, diffuse heating, and the formation of molecular gas using a chemical network. The SNe explode either at random positions, at density peaks, or both. We further present a model combining thermal energy for resolved and momentum input for unresolved SNe. Random driving at high SN rates results in hot gas (T≳106K) filling >90 per cent of the volume. This gas reaches high pressures (10450 per cent), residing in small, dense clumps. Such a model might resemble the dense ISM in high-redshift galaxies. Peak driving results in huge radiative losses, producing a filamentary ISM with virtually no hot gas, and a small molecular hydrogen mass fraction (≪1 per cent). Varying the ratio of peak to random SNe yields ISM properties in between the two extremes, with a sharp transition for equal contributions. The velocity dispersion in H i remains≲10 km s−1 in all cases. For peak driving, the velocity dispersion in Hα can be as high as 70 km s−1 due to the contribution from young, embedded SN remnant
Spinal involvement in mucopolysaccharidosis IVA (Morquio-Brailsford or Morquio A syndrome): presentation, diagnosis and management.
Mucopolysaccharidosis IVA (MPS IVA), also known as Morquio-Brailsford or Morquio A syndrome, is a lysosomal storage disorder caused by a deficiency of the enzyme N-acetyl-galactosamine-6-sulphate sulphatase (GALNS). MPS IVA is multisystemic but manifests primarily as a progressive skeletal dysplasia. Spinal involvement is a major cause of morbidity and mortality in MPS IVA. Early diagnosis and timely treatment of problems involving the spine are critical in preventing or arresting neurological deterioration and loss of function. This review details the spinal manifestations of MPS IVA and describes the tools used to diagnose and monitor spinal involvement. The relative utility of radiography, computed tomography (CT) and magnetic resonance imaging (MRI) for the evaluation of cervical spine instability, stenosis, and cord compression is discussed. Surgical interventions, anaesthetic considerations, and the use of neurophysiological monitoring during procedures performed under general anaesthesia are reviewed. Recommendations for regular radiological imaging and neurologic assessments are presented, and the need for a more standardized approach for evaluating and managing spinal involvement in MPS IVA is addressed
The application of mid-ranging control to improve thermal disturbance rejection for cryogenic THD/DT layering at the National Ignition Facility
Abstract not provide
Monitoring Active Sites for Hydrogen Evolution Reaction at Model Carbon Surfaces
Carbon is ubiquitous as an electrode material in electrochemical energy conversion devices. If used as support material, the evolution of H2 is undesired on carbon. However, recently carbon-based materials are of high interest as economic and eco-conscious alternative to noble metal catalysts. The targeted design of improved carbon electrode materials requires atomic scale insight into the structure of the sites that catalyse H2 evolution. This work demonstrates that electrochemical scanning tunnelling microscopy under reaction conditions (n-EC-STM) can monitor active sites of highly oriented pyrolytic graphite for the hydrogen evolution reaction. With down to atomic resolution, the most active sites in acidic medium are pinpointed near edge sites and defects, whereas the basal planes remain inactive. Density functional theory calculations support these findings and reveal that only specific defects on graphite are active. Motivated by these results, the extensive usage of n-EC-STM on doped carbon-based materials is encouraged to locate their active sites and guide the synthesis of enhanced electrocatalysts.The authors thank Prof. Plamen Atanassov (University of California, Irvine, USA) and Dr. Jun Maruyama (Osaka Research Institute of Industrial Science and Technology, Japan) for fruitful discussion regarding some experimental results. RMK, RWH and ASB acknowledge the financial support from the German Research Foundation (DFG), in the framework of the projects BA 5795/4-1 and BA 5795/3-1, and under Germany's Excellence Strategy–EXC 2089/1–390776260, cluster of excellence ‘e-conversion’. ASB acknowledges the funding from the European Union's Horizon 2020 research and innovation programme under grant agreement HERMES No. 952184. FCV acknowledges financial support from Spanish MICIUN through RTI2018-095460-B-I00 and María de Maeztu (MDM-2017-0767) grants and a Ramón y Cajal research contract (RYC-2015-18996), and also from Generalitat de Catalunya (grants 2017SGR13 and XRQTC). The use of supercomputing facilities at SURFsara was sponsored by NWO Physical Sciences, with financial support from NWO
Flavonoids from Pterogyne nitens Inhibit Hepatitis C Virus Entry
Hepatitis C virus (HCV) is one of the leading causes of liver diseases and transplantation worldwide. The current available therapy for HCV infection is based on interferon-α, ribavirin and the new direct-acting antivirals (DAAs), such as NS3 protease and NS5B polymerase inhibitors. However, the high costs of drug design, severe side effects and HCV resistance presented by the existing treatments demonstrate the need for developing more efficient anti-HCV agents. This study aimed to evaluate the antiviral effects of sorbifolin (1) and pedalitin (2), two flavonoids from Pterogyne nitens on the HCV replication cycle. These compounds were investigated for their anti-HCV activities using genotype 2a JFH-1 subgenomic replicons and infectious virus systems. Flavonoids 1 and 2 inhibited virus entry up to 45.0% and 78.7% respectively at non-cytotoxic concentrations. The mechanism of the flavonoid 2 block to virus entry was demonstrated to be by both the direct action on virus particles and the interference on the host cells. Alternatively, the flavonoid 1 activity was restricted to its virucidal effect. Additionally, no inhibitory effects on HCV replication and release were observed by treating cells with these flavonoids. These data are the first description of 1 and 2 possessing in vitro anti-HCV activity
Pathways to paediatric urology subspecialisation:a study of casemix, incumbent attitudes and opinions
Objective: To identify any self-reported differences or attitudes towards certification, publication, or practice patterns between adult urology and paediatric general surgery-trained paediatric urology providers. There are no known published differences in clinical/operative/research outcomes in either group. Methods: An 18-item cross-sectional survey was compiled through the EAU Young Academic Urologists (YAU) office and disseminated to a trans-Atlantic convenience sample of current practising paediatric urologists. This was created using a mini-Delphi method to provide current semi-quantitative data relating to current opinions and attitudes of this cohort. Results: A total of 228 respondents completed the survey, with female respondents representing 37% and 34% for urology and paediatric general surgery, respectively. Nearly 90% overall respondents felt that a full 2-year paediatric fellowship program was very important and 94% endorsed a collaborative dedicated paediatric urology on call service, with 92% supporting the joint development of transitional care. Urology managed higher numbers of bedwetting (p = 0.04), bladder bowel dysfunction (p = 0.02), endourological procedures (p = 0.04), and robotics (p = 0.04). Paediatric general surgery managed higher numbers of laparoscopic reconstruction (p = 0.03), and posterior urethral valve ablation (p = 0.002). Conclusion: This study represents the first time that a cross-sectional cohort of paediatric urologists from different training backgrounds were compared to assess their productivity, practice patterns and attitudes. Paediatric urology is in a unique position to have two contributing specialities, with the ability to provide optimal transitional and lifelong care. We believe that there should be a strong emphasis on collaboration and to remove any historically-created barriers under policies of equity, diversity and inclusivity.</p
Ion acceleration from microstructured targets irradiated by high-intensity picosecond laser pulses
Structures on the front surface of thin foil targets for laser-driven ion acceleration have been proposed to increase the ion source maximum energy and conversion efficiency. While structures have been shown to significantly boost the proton acceleration from pulses of moderate-energy fluence, their performance on tightly focused and high-energy lasers remains unclear. Here, we report the results of laser-driven three-dimensional (3D)-printed microtube targets, focusing on their efficacy for ion acceleration. Using the high-contrast (∼1012) PHELIX laser (150J, 1021W/cm2), we studied the acceleration of ions from 1-μm-thick foils covered with micropillars or microtubes, which we compared with flat foils. The front-surface structures significantly increased the conversion efficiency from laser to light ions, with up to a factor of 5 higher proton number with respect to a flat target, albeit without an increase of the cutoff energy. An optimum diameter was found for the microtube targets. Our findings are supported by a systematic particle-in-cell modeling investigation of ion acceleration using 2D simulations with various structure dimensions. Simulations reproduce the experimental data with good agreement, including the observation of the optimum tube diameter, and reveal that the laser is shuttered by the plasma filling the tubes, explaining why the ion cutoff energy was not increased in this regime.Fil: Bailly Grandvaux, M.. University of California at San Diego; Estados UnidosFil: Kawahito, D.. University of California at San Diego; Estados UnidosFil: McGuffey, C.. University of California at San Diego; Estados UnidosFil: Strehlow, J.. University of California at San Diego; Estados UnidosFil: Edghill, B.. University of California at San Diego; Estados UnidosFil: Wei, M.S.. Laboratory For Laser Energetics; Estados UnidosFil: Alexander, N.. General Atomics; Estados UnidosFil: Haid, A.. General Atomics; Estados UnidosFil: Brabetz, C.. Helmholtzzentrum Für Schwerionenforschung; AlemaniaFil: Bagnoud, V.. Helmholtzzentrum Für Schwerionenforschung; AlemaniaFil: Hollinger, R.. State University of Colorado - Fort Collins; Estados UnidosFil: Capeluto, Maria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Rocca, J.J.. State University of Colorado - Fort Collins; Estados UnidosFil: Beg, F.N.. University of California at San Diego; Estados Unido
Recommended from our members
Access control and interlock system at the Advanced Photon Source
The Advanced Photon Source (APS) consists of a linac, position accumulator ring (PAR), booster synchrotron, storage ring, and up to 70 experimental beamlines. The Access Control and Interlock System (ACIS) utilizes redundant programmable logic controllers (PLCs) and a third hard-wired chain to protect personnel from prompt radiation generated by the linac, PAR, synchrotron, and storage ring. This paper describes the ACIS`s design philosophy, configuration, hardware, functionality, validation requirements, and operational experience
PManalyzer: A Software Facilitating the Study of Sensorimotor Control of Whole-Body Movements
Motion analysis is used to study the functionality or dysfunctionality of the neuromuscular system, as human movements are the direct outcome of neuromuscular control. However, motion analysis often relies on measures that quantify simplified aspects of a motion, such as specific joint angles, despite the well-known complexity of segment interactions. In contrast, analyzing whole-body movement patterns may offer a new understanding of movement coordination and movement performance. Clinical research and sports technique evaluations suggest that principal component analysis (PCA) provides novel and valuable insights into control aspects of the neuromuscular system and how they relate to coordinative patterns. However, the implementation of PCA computations are time consuming, and require mathematical knowledge and programming skills, drastically limiting its application in current research. Therefore, the aim of this study is to present the Matlab software tool “PManalyzer” to facilitate and encourage the application of state-of-the-art PCA concepts in human movement science. The generalized PCA concepts implemented in the PManalyzer allow users to apply a variety of marker set independent PCA-variables on any kinematic data and to visualize the results with customizable plots. In addition, the extracted movement patterns can be explored with video options that may help testing hypotheses related to the interplay of segments. Furthermore, the software can be easily modified and adapted to any specific application
- …
