1,026 research outputs found
Superior pre-osteoblast cell response of etched ultrafine-grained titanium with a controlled crystallographic orientation
Ultrafine-grained (UFG) Ti for improved mechanical performance as well as its surface modification enhancing biofunctions has attracted much attention in medical industries. Most of the studies on the surface etching of metallic biomaterials have focused on surface topography and wettability but not crystallographic orientation, i.e., texture, which influences the chemical as well as the physical properties. In this paper, the influences of texture and grain size on roughness, wettability, and pre-osteoblast cell response were investigated in vitro after HF etching treatment. The surface characteristics and cell behaviors of ultrafine, fine, and coarse-grained Ti were examined after the HF etching. The surface roughness during the etching treatment was significantly increased as the orientation angle from the basal pole was increased. The cell adhesion tendency of the rough surface was promoted. The UFG Ti substrate exhibited a higher texture energy state, rougher surface, enhanced hydrophilic wettability, and better cell adhesion and proliferation behaviors after etching than those of the coarse- and fine-grained Ti substrates. These results provide a new route for enhancing both mechanical and biological performances using etching after grain refinement of Ti. ? The Author(s) 2017.115Ysciescopu
Neutral Plasma Oscillations at Zero Temperature
We use cold plasma theory to calculate the response of an ultracold neutral
plasma to an applied rf field. The free oscillation of the system has a
continuous spectrum and an associated damped quasimode. We show that this
quasimode dominates the driven response. We use this model to simulate plasma
oscillations in an expanding ultracold neutral plasma, providing insights into
the assumptions used to interpret experimental data [Phys. Rev. Lett. 85, 318
(2000)].Comment: 4.3 pages, including 3 figure
Use of non-adiabatic geometric phase for quantum computing by nuclear magnetic resonance
Geometric phases have stimulated researchers for its potential applications
in many areas of science. One of them is fault-tolerant quantum computation. A
preliminary requisite of quantum computation is the implementation of
controlled logic gates by controlled dynamics of qubits. In controlled
dynamics, one qubit undergoes coherent evolution and acquires appropriate
phase, depending on the state of other qubits. If the evolution is geometric,
then the phase acquired depend only on the geometry of the path executed, and
is robust against certain types of errors. This phenomenon leads to an
inherently fault-tolerant quantum computation.
Here we suggest a technique of using non-adiabatic geometric phase for
quantum computation, using selective excitation. In a two-qubit system, we
selectively evolve a suitable subsystem where the control qubit is in state
|1>, through a closed circuit. By this evolution, the target qubit gains a
phase controlled by the state of the control qubit. Using these geometric phase
gates we demonstrate implementation of Deutsch-Jozsa algorithm and Grover's
search algorithm in a two-qubit system
Neutron beam test of CsI crystal for dark matter search
We have studied the response of Tl-doped and Na-doped CsI crystals to nuclear
recoils and 's below 10 keV. The response of CsI crystals to nuclear
recoil was studied with mono-energetic neutrons produced by the
H(p,n)He reaction. This was compared to the response to Compton
electrons scattered by 662 keV -ray. Pulse shape discrimination between
the response to these 's and nuclear recoils was studied, and quality
factors were estimated. The quenching factors for nuclear recoils were derived
for both CsI(Na) and CsI(Tl) crystals.Comment: 21pages, 14figures, submitted to NIM
The PHENIX Experiment at RHIC
The physics emphases of the PHENIX collaboration and the design and current
status of the PHENIX detector are discussed. The plan of the collaboration for
making the most effective use of the available luminosity in the first years of
RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program
available at http://www.rhic.bnl.gov/phenix
Pulse-shape discrimination between electron and nuclear recoils in a NaI(Tl) crystal
Abstract: We report on the response of a high light-output NaI(Tl) crystal to nuclear recoils induced by neutrons from an Am-Be source and compare the results with the response to electron recoils produced by Compton-scattered 662 keV γ-rays from a 137Cs source. The measured pulse-shape discrimination (PSD) power of the NaI(Tl) crystal is found to be significantly improved because of the high light output of the NaI(Tl) detector. We quantify the PSD power with a quality factor and estimate the sensitivity to the interaction rate for weakly interacting massive particles (WIMPs) with nucleons, and the result is compared with the annual modulation amplitude observed by the DAMA/LIBRA experiment. The sensitivity to spin-independent WIMP-nucleon interactions based on 100 kg·year of data from NaI detectors is estimated with simulated experiments, using the standard halo model. © 2015, The Author(s)1371Nsciescopu
First limit on WIMP cross section with low background CsI(Tl) crystal detector
The Korea Invisible Mass Search (KIMS) collaboration has been carrying out
WIMP search experiment with CsI(T)crystal detectors at the YanYang
Underground Laboratory. A successful reduction of the internal background of
the crystal is done and a good pulse shape discrimination is achieved. We
report the first result on WIMP search obtained with 237 kgdays data
using one full-size CsI(T)crystal of 6.6 kg mass.Comment: 16 pages, 9 figures, submitted to Physics Letters
Origins of the Ambient Solar Wind: Implications for Space Weather
The Sun's outer atmosphere is heated to temperatures of millions of degrees,
and solar plasma flows out into interplanetary space at supersonic speeds. This
paper reviews our current understanding of these interrelated problems: coronal
heating and the acceleration of the ambient solar wind. We also discuss where
the community stands in its ability to forecast how variations in the solar
wind (i.e., fast and slow wind streams) impact the Earth. Although the last few
decades have seen significant progress in observations and modeling, we still
do not have a complete understanding of the relevant physical processes, nor do
we have a quantitatively precise census of which coronal structures contribute
to specific types of solar wind. Fast streams are known to be connected to the
central regions of large coronal holes. Slow streams, however, appear to come
from a wide range of sources, including streamers, pseudostreamers, coronal
loops, active regions, and coronal hole boundaries. Complicating our
understanding even more is the fact that processes such as turbulence,
stream-stream interactions, and Coulomb collisions can make it difficult to
unambiguously map a parcel measured at 1 AU back down to its coronal source. We
also review recent progress -- in theoretical modeling, observational data
analysis, and forecasting techniques that sit at the interface between data and
theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue
connected with a 2016 ISSI workshop on "The Scientific Foundations of Space
Weather." 44 pages, 9 figure
Evidence of Color Coherence Effects in W+jets Events from ppbar Collisions at sqrt(s) = 1.8 TeV
We report the results of a study of color coherence effects in ppbar
collisions based on data collected by the D0 detector during the 1994-1995 run
of the Fermilab Tevatron Collider, at a center of mass energy sqrt(s) = 1.8
TeV. Initial-to-final state color interference effects are studied by examining
particle distribution patterns in events with a W boson and at least one jet.
The data are compared to Monte Carlo simulations with different color coherence
implementations and to an analytic modified-leading-logarithm perturbative
calculation based on the local parton-hadron duality hypothesis.Comment: 13 pages, 6 figures. Submitted to Physics Letters
Search for Higgs bosons decaying to tautau pairs in ppbar collisions at sqrt(s) = 1.96 TeV
We present a search for the production of neutral Higgs bosons decaying into
tautau pairs in ppbar collisions at a center-of-mass energy of 1.96 TeV. The
data, corresponding to an integrated luminosity of 5.4 fb-1, were collected by
the D0 experiment at the Fermilab Tevatron Collider. We set upper limits at the
95% C.L. on the product of production cross section and branching ratio for a
scalar resonance decaying into tautau pairs, and we then interpret these limits
as limits on the production of Higgs bosons in the minimal supersymmetric
standard model (MSSM) and as constraints in the MSSM parameter space.Comment: 7 pages, 5 figures, submitted to PL
- âŠ