144 research outputs found

    Mucosa-associated bacterial diversity in necrotizing enterocolitis

    Get PDF
    Background: Previous studies of infant fecal samples have failed to clarify the role of gut bacteria in the pathogenesis of NEC. We sought to characterize bacterial communities within intestinal tissue resected from infants with and without NEC. Methods: 26 intestinal samples were resected from 19 infants, including 16 NEC samples and 10 non-NEC samples. Bacterial 16S rRNA gene sequences were amplified and sequenced. Analysis allowed for taxonomic identification, and quantitative PCR was used to quantify the bacterial load within samples. Results: NEC samples generally contained an increased total burden of bacteria. NEC and non-NEC sample sets were both marked by high inter-individual variability and an abundance of opportunistic pathogens. There was no statistically significant distinction between the composition of NEC and non-NEC microbial communities. K-means clustering enabled us to identify several stable clusters, including clusters of NEC and midgut volvulus samples enriched with Clostridium and Bacteroides. Another cluster containing both NEC and non-NEC samples was marked by an abundance of Enterobacteriaceae and decreased diversity among NEC samples. Conclusions: The results indicate that NEC is a disease without a uniform pattern of microbial colonization, but that NEC is associated with an abundance of strict anaerobes and a decrease in community diversity

    Novel role for the innate immune receptor toll-like receptor 4 (TLR4) in the regulation of the wnt signaling pathway and photoreceptor apoptosis

    Get PDF
    Recent evidence has implicated innate immunity in regulating neuronal survival in the brain during stroke and other neurodegenerations. Photoreceptors are specialized light-detecting neurons in the retina that are essential for vision. In this study, we investigated the role of the innate immunity receptor TLR4 in photoreceptors. TLR4 activation by lipopolysaccharide (LPS) significantly reduced the survival of cultured mouse photoreceptors exposed to oxidative stress. With respect to mechanism, TLR4 suppressed Wnt signaling, decreased phosphorylation and activation of the Wnt receptor LRP6, and blocked the protective effect of the Wnt3a ligand. Paradoxically, TLR4 activation prior to oxidative injury protected photoreceptors, in a phenomenon known as preconditioning. Expression of TNFα and its receptors TNFR1 and TNFR2 decreased during preconditioning, and preconditioning was mimicked by TNFα antagonists, but was independent of Wnt signaling. Therefore, TLR4 is a novel regulator of photoreceptor survival that acts through the Wnt and TNFα pathways. © 2012 Yi et al

    Monoubiquitination of syntaxin 3 leads to retrieval from the basolateral plasma membrane and facilitates cargo recruitment to exosomes

    Get PDF
    Syntaxin 3 (Stx3), a SNARE protein located and functioning at the apical plasma membrane of epithelial cells, is required for epithelial polarity. A fraction of Stx3 is localized to late endosomes/lysosomes, although how it traffics there and its function in these organelles is unknown. Here we report that Stx3 undergoes monoubiquitination in a conserved polybasic domain. Stx3 present at the basolateral—but not the apical—plasma membrane is rapidly endocytosed, targeted to endosomes, internalized into intraluminal vesicles (ILVs), and excreted in exosomes. A nonubiquitinatable mutant of Stx3 (Stx3-5R) fails to enter this pathway and leads to the inability of the apical exosomal cargo protein GPRC5B to enter the ILV/exosomal pathway. This suggests that ubiquitination of Stx3 leads to removal from the basolateral membrane to achieve apical polarity, that Stx3 plays a role in the recruitment of cargo to exosomes, and that the Stx3-5R mutant acts as a dominant-negative inhibitor. Human cytomegalovirus (HCMV) acquires its membrane in an intracellular compartment and we show that Stx3-5R strongly reduces the number of excreted infectious viral particles. Altogether these results suggest that Stx3 functions in the transport of specific proteins to apical exosomes and that HCMV exploits this pathway for virion excretion

    Coxiella burnetii Phagocytosis Is Regulated by GTPases of the Rho Family and the RhoA Effectors mDia1 and ROCK

    Get PDF
    The GTPases belonging to the Rho family control the actin cytoskeleton rearrangements needed for particle internalization during phagocytosis. ROCK and mDia1 are downstream effectors of RhoA, a GTPase involved in that process. Coxiella burnetii, the etiologic agent of Q fever, is internalized by the host´s cells in an actin-dependent manner. Nevertheless, the molecular mechanism involved in this process has been poorly characterized. This work analyzes the role of different GTPases of the Rho family and some downstream effectors in the internalization of C. burnetii by phagocytic and non-phagocytic cells. The internalization of C. burnetii into HeLa and RAW cells was significantly inhibited when the cells were treated with Clostridium difficile Toxin B which irreversibly inactivates members of the Rho family. In addition, the internalization was reduced in HeLa cells that overexpressed the dominant negative mutants of RhoA, Rac1 or Cdc42 or that were knocked down for the Rho GTPases. The pharmacological inhibition or the knocking down of ROCK diminished bacterium internalization. Moreover, C. burnetii was less efficiently internalized in HeLa cells overexpressing mDia1-N1, a dominant negative mutant of mDia1, while the overexpression of the constitutively active mutant mDia1-ΔN3 increased bacteria uptake. Interestingly, when HeLa and RAW cells were infected, RhoA, Rac1 and mDia1 were recruited to membrane cell fractions. Our results suggest that the GTPases of the Rho family play an important role in C. burnetii phagocytosis in both HeLa and RAW cells. Additionally, we present evidence that ROCK and mDia1, which are downstream effectors of RhoA, are involved in that processFil: Salinas Ojeda, Romina Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Ortiz Flores, Rodolfo Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Distel, Jesús Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Aguilera, Milton Osmar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Colombo, Maria Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Beron, Walter. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; Argentin

    Self-assembled hydrogel fibers for sensing the multi-compartment intracellular milieu

    Get PDF
    Targeted delivery of drugs and sensors into cells is an attractive technology with both medical and scientific applications. Existing delivery vehicles are generally limited by the complexity of their design, dependence on active transport, and inability to function within cellular compartments. Here, we developed self-assembled nanofibrous hydrogel fibers using a biologically inert, low-molecular-weight amphiphile. Self-assembled nanofibrous hydrogels offer unique physical/mechanical properties and can easily be loaded with a diverse range of payloads. Unlike commercially available E. coli membrane particles covalently bound to the pH reporting dye pHrodo, pHrodo encapsulated in self-assembled hydrogel-fibers internalizes into macrophages at both physiologic (37°C) and sub-physiologic (4°C) temperatures through an energy-independent, passive process. Unlike dye alone or pHrodo complexed to E. coli, pHrodo-SAFs report pH in both the cytoplasm and phagosomes, as well the nucleus. This new class of materials should be useful for next-generation sensing of the intracellular milieu

    A Canadian Critical Care Trials Group project in collaboration with the international forum for acute care trialists - Collaborative H1N1 Adjuvant Treatment pilot trial (CHAT): study protocol and design of a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Swine origin influenza A/H1N1 infection (H1N1) emerged in early 2009 and rapidly spread to humans. For most infected individuals, symptoms were mild and self-limited; however, a small number developed a more severe clinical syndrome characterized by profound respiratory failure with hospital mortality ranging from 10 to 30%. While supportive care and neuraminidase inhibitors are the main treatment for influenza, data from observational and interventional studies suggest that the course of influenza can be favorably influenced by agents not classically considered as influenza treatments. Multiple observational studies have suggested that HMGCoA reductase inhibitors (statins) can exert a class effect in attenuating inflammation. The Collaborative H1N1 Adjuvant Treatment (CHAT) Pilot Trial sought to investigate the feasibility of conducting a trial during a global pandemic in critically ill patients with H1N1 with the goal of informing the design of a larger trial powered to determine impact of statins on important outcomes.</p> <p>Methods/Design</p> <p>A multi-national, pilot randomized controlled trial (RCT) of once daily enteral rosuvastatin versus matched placebo administered for 14 days for the treatment of critically ill patients with suspected, probable or confirmed H1N1 infection. We propose to randomize 80 critically ill adults with a moderate to high index of suspicion for H1N1 infection who require mechanical ventilation and have received antiviral therapy for ≤ 72 hours. Site investigators, research coordinators and clinical pharmacists will be blinded to treatment assignment. Only research pharmacy staff will be aware of treatment assignment. We propose several approaches to informed consent including a priori consent from the substitute decision maker (SDM), waived and deferred consent. The primary outcome of the CHAT trial is the proportion of eligible patients enrolled in the study. Secondary outcomes will evaluate adherence to medication administration regimens, the proportion of primary and secondary endpoints collected, the number of patients receiving open-label statins, consent withdrawals and the effect of approved consent models on recruitment rates.</p> <p>Discussion</p> <p>Several aspects of study design including the need to include central randomization, preserve allocation concealment, ensure study blinding compare to a matched placebo and the use novel consent models pose challenges to investigators conducting pandemic research. Moreover, study implementation requires that trial design be pragmatic and initiated in a short time period amidst uncertainty regarding the scope and duration of the pandemic.</p> <p>Trial Registration Number</p> <p><a href="http://www.controlled-trials.com/ISRCTN45190901">ISRCTN45190901</a></p

    Ethical and Scientific Considerations Regarding Animal Testing and Research

    Get PDF
    In 1959, William Russell and Rex Burch published the seminal book, The Principles of Humane Experimental Technique, which emphasized reduction, refinement, and replacement of animal use, principles which have since been referred to as the ‘‘3 Rs’’. These principles encouraged researchers to work to reduce the number of animals used in experiments to the minimum considered necessary, refine or limit the pain and distress to which animals are exposed, and replace the use of animals with non-animal alternatives when possible. Despite the attention brought to this issue by Russell and Burch and since, the number of animals used in research and testing has continued to increase, raising serious ethical and scientific issues. Further, while the ‘‘3 Rs’’ capture crucially important concepts, they do not adequately reflect the substantial developments in our new knowledge about the cognitive and emotional capabilities of animals, the individual interests of animals, or an updated understanding of potential harms associated with animal research. This Overview provides a brief summary of the ethical and scientific considerations regarding the use of animals in research and testing, and accompanies a Collection entitled Animals, Research, and Alternatives: Measuring Progress 50 Years Later, which aims to spur ethical and scientific advancement

    Phagocytosis depends on TRPV2-mediated calcium influx and requires TRPV2 in lipids rafts: alteration in macrophages from patients with cystic fibrosis.

    Get PDF
    Whereas many phagocytosis steps involve ionic fluxes, the underlying ion channels remain poorly defined. As reported in mice, the calcium conducting TRPV2 channel impacts the phagocytic process. Macrophage phagocytosis is critical for defense against pathogens. In cystic fibrosis (CF), macrophages have lost their capacity to act as suppressor cells and thus play a significant role in the initiating stages leading to chronic inflammation/infection. In a previous study, we demonstrated that impaired function of CF macrophages is due to a deficient phagocytosis. The aim of the present study was to investigate TRPV2 role in the phagocytosis capacity of healthy primary human macrophage by studying its activity, its membrane localization and its recruitment in lipid rafts. In primary human macrophages, we showed that P. aeruginosa recruits TRPV2 channels at the cell surface and induced a calcium influx required for bacterial phagocytosis. We presently demonstrate that to be functional and play a role in phagocytosis, TRPV2 might require a preferential localization in lipid rafts. Furthermore, CF macrophage displays a perturbed calcium homeostasis due to a defect in TRPV2. In this context, deregulated TRPV2-signaling in CF macrophages could explain their defective phagocytosis capacity that contribute to the maintenance of chronic infection
    • …
    corecore