1,055 research outputs found

    Understanding and Managing Non-functional Requirements for Machine Learning Systems

    Get PDF
    Background: Machine Learning (ML) systems learn using big data and solve a wide range of prediction and decision making problems that would be difficult to solve with traditional systems. However, increasing use of ML in complex and safety-critical systems has raised concerns about quality requirements, which are defined as Non-Functional requirements (NFRs). Many NFRs, such as fairness, transparency, explainability, and safety are critical in ensuring the success and acceptance of ML systems. However, many NFRs for ML systems are not well understood (e.g., maintainability), some known NFRs may become more important (e.g., fairness), while some may become irrelevant in the ML context (e.g., modularity), some new NFRs may come into play (e.g., retrainability), and the scope of defining and measuring NFRs in ML systems is also a challenging task.Objective: The research project focuses on addressing and managing issues related to NFRs for ML systems. The objective of the research is to identify current practices and challenges related to NFRs in an ML context, and to develop solutions to manage NFRs for ML systems.Method: We are using design science as a base of the research method. We carried out different empirical methodologies–including interviews, survey, and a part of systematic mapping study to collect data, and to explore the problem space. To get in-depth insights on collected data, we performed thematic analysis on qualitative data and used descriptive statistics to analyze qualitative data. We are working towards proposing a quality framework as an artifact to identify, define, specify, and manage NFRs for ML systems.Findings: We found that NFRs are crucial and play an important role for the success of the ML systems. However, there is a research gap in this area, and managing NFRs for ML systems is challenging. To address the research objectives, we have identified important NFRs for ML systems, and NFR and NFR measurement-related challenges. We also identified preliminary NFR definition and measurement scope and RE-related challenges in different example contexts.Conclusion: Although NFRs are very important for ML systems, it is complex and difficult to define, allocate, specify, and measure NFRs for ML systems. Currently the industry and research is does not have specific and well organized solutions for managing NFRs for ML systems because of unintended bias, the non-deterministic behavior of ML, and expensive and time-consuming exhaustive testing. Currently, we are working on the development of a quality framework to manage (e.g., identify important NFRs, scoping and measuring NFRs) NFRs in the ML systems development process

    Non-Functional Requirements for Machine Learning: An Exploration of System Scope and Interest

    Get PDF
    Systems that rely on Machine Learning (ML systems) have differing demands on quality—non-functional requirements (NFRs)— compared to traditional systems. NFRs for ML systems may differ in their definition, scope, and importance. Despite the importance of NFRs for ML systems, our understanding of their definitions and scope—and of the extent of existing research—is lacking compared to our understanding in traditional domains.Building on an investigation into importance and treatment of ML system NFRs in industry, we make three contributions towards narrowing this gap: (1) we present clusters of ML system NFRs based on shared characteristics, (2) we use Scopus search results— as well as inter-coder reliability on a sample of NFRs—to estimate the number of relevant studies on a subset of the NFRs, and (3), we use our initial reading of titles and abstracts in each sample to define the scope of NFRs over parts of the system (e.g., training data, ML model). These initial findings form the groundwork for future research in this emerging domain

    Enhanced drug delivery and wound healing potential of berberine-loaded chitosan–alginate nanocomposite gel: characterization and in vivo assessment

    Get PDF
    Berberine–encapsulated polyelectrolyte nanocomposite (BR–PolyET–NC) gel was developed as a long-acting improved wound healing therapy. BR–PolyET–NC was developed using an ionic gelation/complexation method and thereafter loaded into Carbopol gel. Formulation was optimized using Design-ExpertÂź software implementing a three-level, three-factor Box Behnken design (BBD). The concentrations of polymers, namely, chitosan and alginate, and calcium chloride were investigated based on particle size and %EE. Moreover, formulation characterized in vitro for biopharmaceutical performances and their wound healing potency was evaluated in vivo in adult BALB/c mice. The particle distribution analysis showed a nanocomposite size of 71 ± 3.5 nm, polydispersity index (PDI) of 0.45, ζ–potential of +22 mV, BR entrapment of 91 ± 1.6%, and loading efficiency of 12.5 ± 0.91%. Percentage drug release was recorded as 89.50 ± 6.9% with pH 6.8, thereby simulating the wound microenvironment. The in vitro investigation of the nanocomposite gel revealed uniform consistency, well spreadability, and extrudability, which are ideal for topical wound use. The analytical estimation executed using FT-IR, DSC, and X-ray diffraction (XRD) indicated successful formulation with no drug excipients and without the amorphous state. The colony count of microbes was greatly reduced in the BR–PolyET–NC treated group on the 15th day from up to 6 CFU compared to 20 CFU observed in the BR gel treated group. The numbers of monocytes and lymphocytes counts were significantly reduced following healing progression, which reached to a peak level and vanished on the 15th day. The observed experimental characterization and in vivo study indicated the effectiveness of the developed BR–PolyET–NC gel toward wound closure and healing process, and it was found that >99% of the wound closed by 15th day, stimulated via various anti-inflammatory and angiogenic factors

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe

    Combined searches for the production of supersymmetric top quark partners in proton-proton collisions at root s=13 TeV

    Get PDF
    A combination of searches for top squark pair production using proton-proton collision data at a center-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 137 fb(-1) collected by the CMS experiment, is presented. Signatures with at least 2 jets and large missing transverse momentum are categorized into events with 0, 1, or 2 leptons. New results for regions of parameter space where the kinematical properties of top squark pair production and top quark pair production are very similar are presented. Depending on themodel, the combined result excludes a top squarkmass up to 1325 GeV for amassless neutralino, and a neutralinomass up to 700 GeV for a top squarkmass of 1150 GeV. Top squarks with masses from 145 to 295 GeV, for neutralino masses from 0 to 100 GeV, with a mass difference between the top squark and the neutralino in a window of 30 GeV around the mass of the top quark, are excluded for the first time with CMS data. The results of theses searches are also interpreted in an alternative signal model of dark matter production via a spin-0 mediator in association with a top quark pair. Upper limits are set on the cross section for mediator particle masses of up to 420 GeV

    MUSiC : a model-unspecific search for new physics in proton-proton collisions at root s=13TeV

    Get PDF
    Results of the Model Unspecific Search in CMS (MUSiC), using proton-proton collision data recorded at the LHC at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1), are presented. The MUSiC analysis searches for anomalies that could be signatures of physics beyond the standard model. The analysis is based on the comparison of observed data with the standard model prediction, as determined from simulation, in several hundred final states and multiple kinematic distributions. Events containing at least one electron or muon are classified based on their final state topology, and an automated search algorithm surveys the observed data for deviations from the prediction. The sensitivity of the search is validated using multiple methods. No significant deviations from the predictions have been observed. For a wide range of final state topologies, agreement is found between the data and the standard model simulation. This analysis complements dedicated search analyses by significantly expanding the range of final states covered using a model independent approach with the largest data set to date to probe phase space regions beyond the reach of previous general searches.Peer reviewe

    Measurement of prompt open-charm production cross sections in proton-proton collisions at root s=13 TeV

    Get PDF
    The production cross sections for prompt open-charm mesons in proton-proton collisions at a center-of-mass energy of 13TeV are reported. The measurement is performed using a data sample collected by the CMS experiment corresponding to an integrated luminosity of 29 nb(-1). The differential production cross sections of the D*(+/-), D-+/-, and D-0 ((D) over bar (0)) mesons are presented in ranges of transverse momentum and pseudorapidity 4 < p(T) < 100 GeV and vertical bar eta vertical bar < 2.1, respectively. The results are compared to several theoretical calculations and to previous measurements.Peer reviewe

    Probing effective field theory operators in the associated production of top quarks with a Z boson in multilepton final states at root s=13 TeV

    Get PDF
    Peer reviewe
    • 

    corecore