273 research outputs found

    Chromosome-free bacterial cells are safe and programmable platforms for synthetic biology

    Get PDF
    A type of chromosome-free cell called SimCells (simple cells) has been generated from Escherichia coli, Pseudomonas putida, and Ralstonia eutropha. The removal of the native chromosomes of these bacteria was achieved by double-stranded breaks made by heterologous I-CeuI endonuclease and the degradation activity of endogenous nucleases. We have shown that the cellular machinery remained functional in these chromosome-free SimCells and was able to process various genetic circuits. This includes the glycolysis pathway (composed of 10 genes) and inducible genetic circuits. It was found that the glycolysis pathway significantly extended longevity of SimCells due to its ability to regenerate ATP and NADH/NADPH. The SimCells were able to continuously express synthetic genetic circuits for 10 d after chromosome removal. As a proof of principle, we demonstrated that SimCells can be used as a safe agent (as they cannot replicate) for bacterial therapy. SimCells were used to synthesize catechol (a potent anticancer drug) from salicylic acid to inhibit lung, brain, and soft-tissue cancer cells. SimCells represent a simplified synthetic biology chassis that can be programmed to manufacture and deliver products safely without interference from the host genome

    Thermal Behavior of Benzoic Acid/Isonicotinamide Binary Cocrystals

    Get PDF
    YesA comprehensive study of the thermal behavior of the 1:1 and 2:1 benzoic acid/isonicotinamide cocrystals is reported. The 1:1 material shows a simple unit cell expansion followed by melting upon heating. The 2:1 crystal exhibits more complex behavior. Its unit cell first expands upon heating, as a result of C–H···π interactions being lengthened. It then is converted into the 1:1 crystal, as demonstrated by significant changes in its X-ray diffraction pattern. The loss of 1 equiv of benzoic acid is confirmed by thermogravimetric analysis–mass spectrometry. Hot stage microscopy confirms that, as intuitively expected, the transformation begins at the crystal surface. The temperature at which conversion occurs is highly dependent on the sample mass and geometry, being reduced when the sample is under a gas flow or has a greater exposed surface area but increased when the heating rate is elevated

    Analysis of blood and nasal epithelial transcriptomes to identify mechanisms associated with control of SARS-CoV-2 viral load in the upper respiratory tract

    Get PDF
    Objectives: The amount of SARS-CoV-2 detected in the upper respiratory tract (URT viral load) is a key driver of transmission of infection. Current evidence suggests that mechanisms constraining URT viral load are different from those controlling lower respiratory tract viral load and disease severity. Understanding such mechanisms may help to develop treatments and vaccine strategies to reduce transmission. Combining mathematical modelling of URT viral load dynamics with transcriptome analyses we aimed to identify mechanisms controlling URT viral load. Methods: COVID-19 patients were recruited in Spain during the first wave of the pandemic. RNA sequencing of peripheral blood and targeted NanoString nCounter transcriptome analysis of nasal epithelium were performed and gene expression analysed in relation to paired URT viral load samples collected within 15 days of symptom onset. Proportions of major immune cells in blood were estimated from transcriptional data using computational differential estimation. Weighted correlation network analysis (adjusted for cell proportions) and fixed transcriptional repertoire analysis were used to identify associations with URT viral load, quantified as standard deviations (z-scores) from an expected trajectory over time. Results Eighty-two subjects (50% female, median age 54 years (range 3–73)) with COVID-19 were recruited. Paired URT viral load samples were available for 16 blood transcriptome samples, and 17 respiratory epithelial transcriptome samples. Natural Killer (NK) cells were the only blood cell type significantly correlated with URT viral load z-scores (r = −0.62, P = 0.010). Twenty-four blood gene expression modules were significantly correlated with URT viral load z-score, the most significant being a module of genes connected around IFNA14 (Interferon Alpha-14) expression (r = −0.60, P = 1e-10). In fixed repertoire analysis, prostanoid-related gene expression was significantly associated with higher viral load. In nasal epithelium, only GNLY (granulysin) gene expression showed significant negative correlation with viral load. Conclusions: Correlations between the transcriptional host response and inter-individual variations in SARS-CoV-2 URT viral load, revealed many molecular mechanisms plausibly favouring or constraining viral replication. Existing evidence corroborates many of these mechanisms, including likely roles for NK cells, granulysin, prostanoids and interferon alpha-14. Inhibition of prostanoid production and administration of interferon alpha-14 may be attractive transmission-blocking interventions

    Discovery and validation of a three-gene signature to distinguish COVID-19 and other viral infections in emergency infectious disease presentations: a case-control and observational cohort study

    Get PDF
    Summary Background Emergency admissions for infection often lack initial diagnostic certainty. COVID-19 has highlighted a need for novel diagnostic approaches to indicate likelihood of viral infection in a pandemic setting. We aimed to derive and validate a blood transcriptional signature to detect viral infections, including COVID-19, among adults with suspected infection who presented to the emergency department. Methods Individuals (aged ≥18 years) presenting with suspected infection to an emergency department at a major teaching hospital in the UK were prospectively recruited as part of the Bioresource in Adult Infectious Diseases (BioAID) discovery cohort. Whole-blood RNA sequencing was done on samples from participants with subsequently confirmed viral, bacterial, or no infection diagnoses. Differentially expressed host genes that met additional filtering criteria were subjected to feature selection to derive the most parsimonious discriminating signature. We validated the signature via RT-qPCR in a prospective validation cohort of participants who presented to an emergency department with undifferentiated fever, and a second case-control validation cohort of emergency department participants with PCR-positive COVID-19 or bacterial infection. We assessed signature performance by calculating the area under receiver operating characteristic curves (AUROCs), sensitivities, and specificities. Findings A three-gene transcript signature, comprising HERC6, IGF1R, and NAGK, was derived from the discovery cohort of 56 participants with bacterial infections and 27 with viral infections. In the validation cohort of 200 participants, the signature differentiated bacterial from viral infections with an AUROC of 0·976 (95% CI 0·919−1·000), sensitivity of 97·3% (85·8−99·9), and specificity of 100% (63·1−100). The AUROC for C-reactive protein (CRP) was 0·833 (0·694−0·944) and for leukocyte count was 0·938 (0·840−0·986). The signature achieved higher net benefit in decision curve analysis than either CRP or leukocyte count for discriminating viral infections from all other infections. In the second validation analysis, which included SARS-CoV-2-positive participants, the signature discriminated 35 bacterial infections from 34 SARS-CoV-2-positive COVID-19 infections with AUROC of 0·953 (0·893−0·992), sensitivity 88·6%, and specificity of 94·1%. Interpretation This novel three-gene signature discriminates viral infections, including COVID-19, from other emergency infection presentations in adults, outperforming both leukocyte count and CRP, thus potentially providing substantial clinical utility in managing acute presentations with infection. Funding National Institute for Health Research, Medical Research Council, Wellcome Trust, and EU-FP7

    Reduced ventricular proliferation in the foetal cortex following maternal inflammation in the mouse

    Get PDF
    It has been well established that maternal inflammation during pregnancy alters neurological function in the offspring, but its impact on cortical development and long-term consequences on the cytoarchitecture is largely unstudied. Here we report that lipopolysaccharide-induced systemic maternal inflammation in C57Bl/6 mice at embryonic Day 13.5 of pregnancy, as early as 8 h after challenge, caused a significant reduction in cell proliferation in the ventricular zone of the developing cerebral cortex, as revealed by quantification of anti-phospho-Histone H3 immunoreactivity and bromodeoxyuridine pulse labelling. The angle of mitotic cleavage, determined from analysis of haematoxylin and eosin staining, cyclin E1 gene expression and the pattern of β-catenin immunoreactivity were also altered by the challenge, which suggests a change from symmetric to asymmetric division in the radial progenitor cells. Modifications of cortical lamination and gene expression patterns were detected at post-natal Day 8 suggesting prolonged consequences of these alterations during embryonic development. Cellular uptake of proteins from the cerebrospinal fluid was observed in brains from lipopolysaccharide-treated animals in radial progenitor cells. However, the foetal blood–brain barrier to plasma proteins remained intact. Together, these results indicate that maternal inflammation can disrupt the ventricular surface and lead to decreased cellular proliferation. Changes in cell density in Layers IV and V at post-natal Day 8 show that these initial changes have prolonged effects on cortical organization. The possible shift in the fate of progeny and the resulting alterations in the relative cell numbers in the cerebral cortex following a maternal inflammatory response shown here will require further investigation to determine the long-term consequences of inflammation on the development of neuronal circuitry and behaviour

    A Chemical Analog of Curcumin as an Improved Inhibitor of Amyloid Abeta Oligomerization

    Get PDF
    Amyloid-like plaques are characteristic lesions defining the neuropathology of Alzheimer's disease (AD). The size and density of these plaques are closely associated with cognitive decline. To combat this disease, the few therapies that are available rely on drugs that increase neurotransmission; however, this approach has had limited success as it has simply slowed an imminent decline and failed to target the root cause of AD. Amyloid-like deposits result from aggregation of the Aβ peptide, and thus, reducing amyloid burden by preventing Aβ aggregation represents an attractive approach to improve the therapeutic arsenal for AD. Recent studies have shown that the natural product curcumin is capable of crossing the blood-brain barrier in the CNS in sufficient quantities so as to reduce amyloid plaque burden. Based upon this bioactivity, we hypothesized that curcumin presents molecular features that make it an excellent lead compound for the development of more effective inhibitors of Aβ aggregation. To explore this hypothesis, we screened a library of curcumin analogs and identified structural features that contribute to the anti-oligomerization activity of curcumin and its analogs. First, at least one enone group in the spacer between aryl rings is necessary for measureable anti-Aβ aggregation activity. Second, an unsaturated carbon spacer between aryl rings is essential for inhibitory activity, as none of the saturated carbon spacers showed any margin of improvement over that of native curcumin. Third, methoxyl and hydroxyl substitutions in the meta- and para-positions on the aryl rings appear necessary for some measure of improved inhibitory activity. The best lead inhibitors have either their meta- and para-substituted methoxyl and hydroxyl groups reversed from that of curcumin or methoxyl or hydroxyl groups placed in both positions. The simple substitution of the para-hydroxy group on curcumin with a methoxy substitution improved inhibitor function by 6-7-fold over that measured for curcumin

    Diagnosis of childhood febrile illness using a multi-class blood RNA molecular signature

    Full text link
    Background: Appropriate treatment and management of children presenting with fever depend on accurate and timely diagnosis, but current diagnostic tests lack sensitivity and specificity and are frequently too slow to inform initial treatment. As an alternative to pathogen detection, host gene expression signatures in blood have shown promise in discriminating several infectious and inflammatory diseases in a dichotomous manner. However, differential diagnosis requires simultaneous consideration of multiple diseases. Here, we show that diverse infectious and inflammatory diseases can be discriminated by the expression levels of a single panel of genes in blood. Methods: A multi-class supervised machine-learning approach, incorporating clinical consequence of misdiagnosis as a ‘‘cost’’ weighting, was applied to a whole-blood transcriptomic microarray dataset, incorporating 12 publicly available datasets, including 1,212 children with 18 infectious or inflammatory diseases. The transcriptional panel identifiedwas further validated in a new RNA sequencing dataset comprising 411 febrile children. Findings: We identified 161 transcripts that classified patients into 18 disease categories, reflecting individual causative pathogen and specific disease, as well as reliable prediction of broad classes comprising bacterial infection, viral infection, malaria, tuberculosis, or inflammatory disease. The transcriptional panel was validated in an independent cohort andbenchmarked against existingdichotomousRNA signatures. Conclusions: Our data suggest that classification of febrile illness can be achieved with a single blood sample and opens the way for a new approach for clinical diagnosis. Funding: European Union’s Seventh Framework no. 279185; Horizon2020 no. 668303 PERFORM; Wellcome Trust (206508/Z/17/Z); Medical Research Foundation (MRF-160-0008-ELP-KAFO-C0801); NIHR Imperial BRC

    Substituent interference on supramolecular assembly in urea gelators: synthesis, structure prediction and NMR

    Get PDF
    Eighteen N-aryl-N'-alkyl urea gelators were synthesised in order to understand the effect of head substituents on gelation performance. Minimum gelation concentration values obtained from gel formation studies were used to rank the compounds and revealed the remarkable performance of 4-methoxyphenyl urea gelator 15 in comparison to 4-nitrophenyl analogue 14, which could not be simply ascribed to substituent effects on the hydrogen bonding capabilities of the urea protons. Crystal structure prediction calculations indicated alternative low energy hydrogen bonding arrangements between the nitro group and urea protons in gelator 14, which were supported experimentally by NMR spectroscopy. As a consequence, it was possible to relate the observed differences to interference of the head substituents with the urea tape motif, disrupting the order of supramolecular packing. The combination of unbiased structure prediction calculations with NMR is proposed as a powerful approach to investigate the supramolecular arrangement in gel fibres and help understand the relationships between molecular structure and gel formation

    Characterisation of barley resistance to rhynchosporium on chromosome 6HS

    Get PDF
    Key Message: Major resistance gene to rhynchosporium, Rrs18, maps close to the telomere on the short arm of chromosome 6H in barley. Rhynchosporium or barley scald caused by a fungal pathogen Rhynchosporium commune is one of the most destructive and economically important diseases of barley in the world. Testing of Steptoe × Morex and CIho 3515 × Alexis doubled haploid populations has revealed a large effect QTL for resistance to R. commune close to the telomere on the short arm of chromosome 6H, present in both populations. Mapping markers flanking the QTL from both populations onto the 2017 Morex genome assembly revealed a rhynchosporium resistance locus independent of Rrs13 that we named Rrs18. The causal gene was fine mapped to an interval of 660 Kb using Steptoe × Morex backcross 1 S₂ and S₃ lines with molecular markers developed from Steptoe exome capture variant calling. Sequencing RNA from CIho 3515 and Alexis revealed that only 4 genes within the Rrs18 interval were transcribed in leaf tissue with a serine/threonine protein kinase being the most likely candidate for Rrs18.Max Coulter, Bianca Büttner, Kerstin Hofmann, Micha Bayer, Luke Ramsay, Günther Schweizer, Robbie Waugh, Mark E. Looseley, Anna Avrov
    corecore