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Key message: Major resistance gene to rhynchosporium, Rrs18, maps close to the telomere 18 

on the short arm of chromosome 6H in barley.  19 

 20 

Abstract 21 

Rhynchosporium or barley scald caused by a fungal pathogen Rhynchosporium commune is one of the most 22 

destructive and economically important diseases of barley in the world. Testing of Steptoe x Morex and CIho 23 

3515 x Alexis double haploid populations has revealed a large effect QTL for resistance to R. commune close 24 

to the telomere on the short arm of chromosome 6H, present in both populations. Mapping markers flanking 25 

the QTL from both populations onto the 2017 Morex genome assembly revealed a rhynchosporium resistance 26 

locus independent of Rrs13, that we named Rrs18. The causal gene was fine mapped to an interval of 660 27 

Kb using Steptoe x Morex backcross 1 S2 and S3 lines with molecular markers developed from Steptoe exome 28 

capture variant calling. Sequencing RNA from CIho 3515 and Alexis revealed that only 4 genes within the 29 

Rrs18 interval were transcribed in leaf tissue with a serine/threonine protein kinase being the most likely 30 

candidate for Rrs18.  31 

 32 
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Introduction 1 

 2 

Rhynchosporium (scald) is one of the most destructive and economically important diseases of barley 3 

(Hordeum vulgare L.) worldwide, causing yield losses of up to 30-40%, particularly in parts of the world 4 

with a cool, wet climate (Avrova and Knogge 2012). Rhynchosporium also decreases grain quality, 5 

preventing an affected crop from being sold at a premium for malting (Shipton et al. 1974; Xi et al. 2000; 6 

Zhan et al. 2008). The disease is caused by the hemibiotrophic ascomycete Rhynchosporium commune. The 7 

life cycle and interaction of the fungus with barley is comprehensively described in a number of reviews 8 

(Zhan et al. 2008, Avrova and Knogge 2012). 9 

Rhynchosporium is controlled by the use of fungicides, resistant cultivars and agronomic practices, 10 

with fungicides remaining the most common way of controlling fungal pathogens of cereals in developed 11 

countries. However, R. commune has a long asymptomatic phase, allowing very rapid development of disease 12 

when infection enters the symptomatic phase (Jenkins and Jemmett 1967; Davis and Fitt 1990). This makes 13 

chemical treatment difficult, and fungicide costs coupled with the evolution of fungicide insensitivity make 14 

chemical control an expensive requirement for growers (Oxley et al. 2003, Zhan et al. 2008). As such, 15 

effective cultivar resistance is an attractive option and resistance to this important disease has long been an 16 

important breeding target.   17 

Although a number of resistance genes against rhynchosporium have been mapped in barley, none of 18 

them have been cloned. The 9 major resistance genes identified so far have been found on all chromosomes, 19 

except chromosome 5H (Zhan et al. 2008). A number of QTL have also been identified that map to regions 20 

of the chromosome with known major resistance genes, particularly at the centromeric region of 3H (Rrs1), 21 

the short arms of chromosomes 6 (6HS) (Rrs13) and 7 (7HS) (Rrs2) (Zhan et al. 2008). It has been suggested 22 

that some of these QTL are actually alleles of already identified major resistance genes (Bjørnstad et al. 2002; 23 

Wagner et al. 2008).  24 

Many QTL have been identified based on data from field trials using natural inocula consisting of 25 

complex mixtures of R. commune genotypes. While such studies are useful for showing the effectiveness of 26 

resistance in the field, it makes it impossible to distinguish between partial and major gene mediated 27 

resistance. It also makes comparison of quantitative trait locus/loci (QTL) identified in mapping populations 28 

with known resistance genes difficult, and any comparison between genetic maps is further complicated by 29 

the use of different genetic marker sets (Zhan et al. 2008). It has been suggested that use of genetically 30 

monomorphic isolates of R. commune should provide reproducible results that can distinguish between major 31 

gene and partial resistance (Cheong et al. 2006).  32 

A number of studies have attempted to identify Rrs1 (Hofmann et al. 2013) and Rrs2 (Hanemann et 33 

al. 2009; Marzin et al. 2016). Fine mapping of Rrs2 has been hampered by a region of suppressed 34 

recombination colocating with the resistance gene, limiting physical resolution and preventing identification 35 

of a candidate gene (Hanemann et al. 2009; Marzin et al. 2016).   36 

The major resistance gene Rrs13 was first identified in a H. vulgare ssp. spontaneum x H. vulgare 37 

cultivar Clipper backcross (BC) 3 population (Abbott et al. 1991). The gene was subsequently mapped to 38 

chromosome 6HS, though the identified flanking markers used in these publications did not have published 39 

genetic map positions (Abbott et al. 1995; Genger et al. 2003). Many QTL have also been identified on 6HS 40 
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at a position similar to Rrs13. Cheong et al. (2006) identified a significant QTL in a Schooner x O’Connor 1 

double haploid (DH) population on 6HS. Wagner et al. (2008) identified a QTL on 6HS in a Post x Vixen 2 

DH population using R. commune isolate 271. A QTL on 6HS was also identified in an L94 x Vada 3 

population tested in the field by Shtaya et al. (2006). A single major resistance gene identified in a Vlamingh 4 

x WABAR2147 DH population by Wang et al. (2014) on 6H has flanking markers 1_1166 as distal marker 5 

and Bmag500 as proximal marker, clearly indicating the presence of a single major resistance gene outside 6 

the Rrs13 interval.  In most of these publications, markers are very sparse, and the use of different marker 7 

sets makes comparing the genetic maps difficult or impossible. Wagner et al. (2008) suggested that the QTL 8 

for adult plant resistance (APR) to rhynchosporium identified on 6HS could be alleles of Rrs13. The only 9 

successful comparison that has been carried out on 6HS resistance to rhynchosporium has been with the 10 

Schooner x O’Connor QTL in comparison to the Rrs13 map produced by Genger et al. (2003). Here the 11 

authors suggested that there could be two resistance loci on 6H: Rrs13 and a second locus closer to the distal 12 

end of the chromosome (Cheong et al. 2006). 13 

The Spanish landrace CIho 3515 has outstanding resistance to rhynchosporium and has been found 14 

to contain two resistance loci (Habgood and Hayes 1971; Starling et al. 1971; Hofmann et al. 2013). The first 15 

resistance gene was found to be an allele of what was the Rh-Rh3-Rh4 locus on chromosome 3H, now known 16 

as Rrs1Rh4 (Hofmann et al. 2013). The second resistance gene was suggested as a new resistance gene named 17 

Rh10 by Habgood and Hayes (1971) and proposed to be Rrs13 by Hofmann et al. (2013).  18 

The recent publication of a barley genome sequence, assembled into pseudomolecules, representing 19 

7 chromosomes (Mascher et al. 2017), has allowed identification of highly accurate physical map positions 20 

for flanking markers of rhynchosporium resistance QTL, allowing comparison of marker positions from 21 

different genetic maps. 22 

In this study, an analysis of barley resistance to rhynchosporium on 6HS was carried out using a CIho 23 

3515 x Alexis (CxA) DH population, a Steptoe x Morex (SxM) DH population (Kleinhofs et al. 1993, Druka 24 

et al. 2008) and a SxM BC1 population, using several genetically diverse isolates of R. commune. Unlike 25 

previous studies on rhynchosporium resistance, high coverage next generation sequencing data is now 26 

available for both Morex and Steptoe (Mascher et al. 2013; Mascher et al. 2017). The availability of exome 27 

capture sequence for Steptoe has further enabled identification of single nucleotide polymorphisms (SNPs) 28 

between Steptoe and Morex (Mascher et al. 2013). This allows rapid design of molecular markers for 29 

genotyping, making the SxM population ideal for the fine mapping of rhynchosporium resistance and 30 

identification of candidate resistance genes.  31 

The aim of this study was to fine map a rhynchosporium resistance QTL identified at the telomeric 32 

region of 6HS in Steptoe. A comparison of the physical position of Rrs13 and of QTL identified on 6HS in 33 

SxM and CxA DH populations revealed that these represent a single resistance locus independent of Rrs13. 34 

Comparison of RNA sequencing data for CIho 3515 and Alexis leaf tissue to sequence data available for 35 

Steptoe and Morex (Mascher et al. 2013; Mascher et al. 2017) led to identification of potential candidate 36 

genes for Rrs18 and SNPs specific to Steptoe and CIho 3515, carrying Rrs18, compared to susceptible Morex 37 

and Alexis. 38 

 39 

 40 
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Materials and methods 1 

 2 

Plant material and fungal isolates 3 

For rhynchosporium resistance testing and QTL mapping studies, two DH populations consisting of 200 4 

SxM DH lines and 245 CxA DH lines were used. Selected lines from the SxM BC1 population developed by 5 

Phillips et al. (2015) were used for fine mapping of resistance on 6HS.  6 

Two barley accessions, SBCC145 and Atlas, containing major rhynchosporium resistance genes 7 

Rrs1Rh4 and Rrs2 respectively, were used for comparison with the level of resistance of Steptoe and CIho 8 

3515 (Table 1). In addition to the susceptible parents Morex and Alexis, barley cultivars Beatrix and Steffi 9 

were used as susceptible references for phenotyping using spray inoculation (Table 1). 10 

R. commune single spore isolate L73a from the culture collection at the James Hutton Institute in 11 

Dundee (Scotland) and single spore isolates 271, UK7, LfL07, Rhy17, SGü4/3, S147-1 and Rhy174 from 12 

the collection held at the Bavarian State Research Centre for Agriculture in Freising (Germany) were grown 13 

on CZV8CM (Newton 1989) or lima bean agar medium (Rohe et al. 1996) at 17oC in the dark. Fungal spores 14 

were harvested from 2-3 weeks old cultures by scraping the mycelial mat with a spatula following the 15 

addition of 5 ml of sterile distilled water (SDW). The tube containing spore suspension was vortexed for 30 16 

s, after which the spore suspension was filtered through glass wool and centrifuged for 3 min at 1600 g. The 17 

resulting pellet was washed twice with 5 ml of SDW, followed by centrifugation at 1600 g for 3 min. The 18 

spore suspension was adjusted to a final concentration of 2-3 x 105 spores/ml for spray inoculation 19 

(Hanemann et al. 2009) or 1 x 105 spores/ml for spot inoculation of detached leaves (Newton et al. 2001).  20 

All isolates were used to phenotype the parents of the 2 DH populations (Table 1). Isolates 271 and 21 

UK7 were used to phenotype 140 of 200 lines from the SxM DH population (Table S1) and isolates L73a 22 

and 271 were used for phenotyping the SxM BC1S2 lines. Isolates LfL07, S147-1 and Rhy174 were used to 23 

phenotype 238, 239 and 238 lines from CxA DH population respectively (Table S2).    24 

 25 

Spray inoculation assay 26 

A seedling spray inoculation assay was conducted as described in Schweizer et al. (1995). Briefly, four seeds 27 

per test line were sown in 6 x 6 cm² pots kept at 18°C for three days during germination and then at 16°C 28 

with 16 h light per day. Three weeks after sowing, plants at the 3-leaf stage were sprayed with a conidia 29 

suspension and kept at 16°C in the dark at 100 % humidity for 48 h. Subsequently, plants were kept at 16°C 30 

with 16 h day length. Symptoms were assessed on a 0-4 scale as described by Jackson and Webster (1976) 31 

with 0 representing no visible symptoms; 1 for very small lesions on the edge and the tip of the leaf; 2 for 32 

small defined lesions on the edge and the base of the leaf; 3 for big, confluent lesions on the whole leaf and 33 

4 for total collapse and drying-out of the leaf. Four inoculated plants per line were scored individually at 34 

around 15 days post inoculation (dpi). The mean of the 4 scores was used as the rhynchosporium severity 35 

score for each line. Lines with a mean score of 2 and higher were considered to be susceptible for calculating 36 

segregation ratio of resistant to susceptible (R:S) lines for each dataset (Table S1, Table S2).  37 

 38 

Detached leaf assay 39 
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Plants for detached leaf assays were grown for 2-3 weeks until the emergence of the 3rd leaf in a growth 1 

cabinet with a relative humidity (RH) of 75%, at 17oC under 16 h day length.  Detached leaf assays were 2 

performed as described in Newton et al. (2001). Briefly, rectangular polystyrene boxes (79 x 47 x 22 mm) 3 

(Stewart Solutions, UK) were filled with approximately 20 ml of 0.5% water agar with 0.8 mM 4 

benzimidazole (Sigma, UK), retarding leaf senescence.  Six 4 cm leaf segments from different lines were 5 

placed with the abaxial surface onto the set agar in each box. Leaves were brushed using a sable hair 6 

paintbrush to remove some of the cuticle waxes, to allow water droplets to stick to the leaf surface. The 7 

abraded area of each leaf was inoculated with 10 μl of spore suspension (105 spores/ml) and the boxes 8 

incubated in a controlled environment cabinet (Leec, model LT1201) at 17oC under 16 h day length, light 9 

intensity 200 lx s-1. Each experiment included 6-10 replicate leaf segments for each line.  Symptoms were 10 

observed from day 15 until day 28, and photographs were taken every 2-4 days. Lesion length was measured 11 

using ImageJ (Abramoff et al. 2004).  12 

 13 

QTL mapping in SxM DH population 14 

140 of 200 DH lines generated from a cross between barley cultivars Steptoe and Morex (Kleinhofs et al. 15 

1993) were phenotyped previously by Druka et al. (2008) by spray inoculation using R. commune isolates 16 

271 and UK7.  Phenotypic data (Table S1) was obtained from www.genenetwork.org/webqtl/main.py. 17 

Genotypes for 200 DH lines as well as the two parental cultivars (Table S1) were generated previously 18 

(Druka et al. 2008), using 1259 markers spread across the barley genome, and also obtained from 19 

www.genenetwork.org/webqtl/main.py. A genetic map was constructed from this genotypic data using the 20 

‘R/qtl’ package (Broman, 2003) for R (R Core Team 2012). Marker phase was determined from the parental 21 

genotypes. Out of 1259 markers and 140 SxM lines, 180 markers and 6 lines were removed as more than 40 22 

% of data points were missing. To improve the genetic map, a further 147 markers that deviated significantly 23 

(p=<0.05) from a 1:1 ratio were removed. Markers were assigned to linkage groups based on recombination 24 

fractions between pairwise marker combinations and the statistical significance of the recombination fraction 25 

as a logarithm of the odds (LOD) score. The maximum recombination fraction for placing two markers in 26 

the same linkage group was set at 0.33; the minimum LOD score for placing two markers in the same linkage 27 

group was set at 3.3. Linkage groups were matched to chromosomes based on previous marker assignments 28 

(Close et al. 2009). Marker order and positions were estimated using the ‘orderMarkers’ function in R/qtl 29 

package (Broman et al. 2003) from R (R Core Team 2012) with marker positions assigned using the Haldane 30 

mapping function. To improve the marker order on chromosome 3H, 21 markers were removed from the 3H 31 

linkage group so that the 3H marker order was roughly comparable to the consensus map of Close et al., 32 

(2009). 911 markers and 134 SxM DH lines were used to create the final genetic map (Table S1, Table S3).  33 

QTL mapping was carried out using Genstat 17th edition (VSN International 2014) using the single 34 

trait/ single environment option. Genetic predictors were generated at 2 cM intervals. A simple interval 35 

mapping scan was carried out using these genetic predictors with the QSTLSCAN procedure. QTL 36 

candidates were identified as positions where the –log10(p) test statistic was higher than the threshold value 37 

that gave a genome wide error rate of 0.05. Genome wide error rate was calculated using the method 38 

described by Li and Ji (2005). Candidate QTL positions were selected using the QCANDIDATES procedure 39 

and used as cofactors in a composite interval mapping scan (again using the QSTLSCAN procedure).  40 

http://www.genenetwork.org/webqtl/main.py
http://www.genenetwork.org/webqtl/main.py
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Composite interval mapping was repeated until a stable set of candidate loci was identified. A final QTL 1 

model was then chosen based on these candidates. This was carried out using the QCANDIDATES and 2 

QMBACKSELECT procedure, which confirmed the significance of candidate QTL identified. Flanking 3 

markers were identified either side of a QTL peak by choosing the closest marker that had a –log10(p) score 4 

that was less than the peak –log10(p) by 1.5 (Table 2). 5 

 6 

QTL mapping in the CxA DH population 7 

Previously the Spanish landrace CIho 3515 has been found to contain two resistance loci: Rrs1Rh4 on 8 

chromosome 3H (Habgood and Hayes 1971; Starling et al. 1971; Hofmann et al. 2013) and a second 9 

resistance gene on chromosome 6H proposed to be Rrs13 by Hofmann et al. (2013). In order to investigate 10 

the resistance locus on chromosome 6H (whilst accounting for the effect of Rrs1Rh4), markers were designed 11 

on both chromosomes. Primers designed using unigene expressed sequence tags (ESTs) were used to 12 

generate sequences from CIho 3515 and Alexis to create U35 and H35 SNP markers. SNP markers were 13 

converted to Cleaved Amplified Polymorphic Sequences (CAPS) markers using the program SNP2CAPS 14 

(Thiel et al. 2004) and used for genotyping. The CxA DH population was also genotyped using the 1536-15 

SNP Ilumina GoldenGate OPA (Close et al. 2009) as described previously by Silvar et al. (2011). Additional 16 

markers used for genotyping included HVM0027 (Ramsay et al. 2000), STS_agtc17 (Grønnerød et al. 2002; 17 

Patil et al. 2003), HVM0060 (Patil et al. 2003), 11_0205 (Hofmann et al 2013), 11_1476 (Hofmann et al 18 

2013), Falcon (Penner et al. 1996), available SSR markers (Ramsay et al. 2000; Li et al. 2003; Rostoks et al. 19 

2005; Stein et al. 2007; Varshney et al. 2007) and SNPs (Rostoks et al. 2005; Stein et al. 2007) for 20 

chromosomes 3H and 6H. 21 

Genetic map construction was carried out using the R/qtl package as described for the SxM DH 22 

population. The maximum recombination fraction for placing two markers in the same linkage group was set 23 

at 0.4, the minimum LOD score for placing two markers in the same linkage group was set at 4. Linkage 24 

groups were assigned chromosomes based on previous published information (Ramsay et al. 2000; Li et al. 25 

2003; Rostoks et al. 2005; Stein et al. 2007; Varshney et al. 2007). 26 

Markers and their positions from the linkage groups on 3H and 6HS (Table S4) were used for QTL 27 

mapping. QTL mapping was carried out as described for the SxM DH population, using genotypic data and 28 

average disease scores for each of 238, 239 and 238 lines from CxA DH population spray-inoculated with 29 

isolates LfL07, S147-1 and Rhy174 (Table S2). 30 

 31 

DNA extraction 32 

Barley genomic DNA for SxM populations was extracted from the youngest leaf of 3-4 weeks old plants on 33 

a Qiagen QIAcube HT/QIAxtractor platform (Qiagen, UK) using standard operating procedure. To test 34 

quality and concentration, 5 l of extracted DNA were run on a 1% agarose gel and band intensity was 35 

compared to GeneRuler 1Kb Ladder (Thermo Fisher Scientific, UK). DNA concentration was also measured 36 

using a NanoDrop spectrophotometer (NanoDrop Technologies Inc., USA) or Quant-iT PicoGreen 37 

(Invitrogen, UK).  38 
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For the CxA DH population genomic DNA was isolated from frozen barley leaves using a NucleoSpin 1 

Plant II Minikit (Macherey-Nagel GmbH & Co. KG, Germany) or according to Behn et al. (2004). 2 

 3 

KASP genotyping 4 

Kompetitive allele specific PCR (KASP) primers (Table S5, Table S6) were designed around the SNPs within 5 

the Rrs18 interval based on oligonucleotide pool assay (OPA) markers or Steptoe exome capture variant 6 

calling data (Mascher et al. 2013). DNA sequence containing 70 bp each side of the SNP was used for 7 

designing two allele-specific and a conserved primer for each KASP assay using a custom python script. 8 

BLASTn comparison, using the default settings, was carried out against the 2012 Morex genome assembly 9 

(IBSC 2012) to determine if the sequence was unique.  10 

Eight µl reactions were prepared in MicroAmp Fast optical 96-well plates (Fisher Scientific, UK) 11 

using <3 ng of DNA, 4 l of 2x KASP reagent (LGC, UK), two allele-specific primers at 0.16 µM each and 12 

a conserved primer at 0.4 µM. PCR and genotyping was completed using a StepOne Plus real-time PCR 13 

machine (Applied Biosystems, USA), with the KASPar 55 plus 6 step program. Sample fluorescence was 14 

measured at 20oC for 2 min, then DNA was denatured for 15 min at 94oC, followed by 10 cycles of 20 s at 15 

94oC and 1 min at 62oC (decreasing by 0.7oC per cycle). This was followed by 32 cycles of 20 s at 94oC and 16 

1 min at 55oC. Samples were then cooled to 20oC for 2 min to allow fluorescence measurement. 17 

 18 

BeadXpress genotyping 19 

Barley genomic DNA concentration was adjusted to 50 ng/μl with Tris–EDTA, pH 8.0. 500 ng of genomic 20 

DNA was used for a 384 SNP Illumina GoldenGate OPA using the BeadXpress platform (Illumina Inc., UK) 21 

according to the manufacturer’s protocol. A set of 384 SNPs distributed along the entire length of 22 

chromosome 6HS, including SNPs selected from previously published sources (Close et al. 2009) as well as 23 

SNPs identified by resequencing barley ESTs, in a range of lines (including cultivars Steptoe and Morex) 24 

was used.  Briefly: barley ESTs from the HarvEST assembly 35 (http://www.harvest-web.org/) that were 25 

predicted to map to barley 6HS by homology with rice gene models located on the syntenous region of rice 26 

chromosome 2H (Mayer et al. 2011) were aligned to the corresponding rice gene model to identify potential 27 

introns. Primers were designed across predicted introns and PCR products sequenced using an Applied 28 

Biosystems AB3730 sequencer to identify polymorphisms. Allele calls were performed using the “GenTrain” 29 

clustering algorithm available in Genome Studio v2011.1 (Illumina Inc., UK). Each SNP-call was checked 30 

manually in Genome Studio for quality and accuracy. The 384 OPA markers data were filtered to remove 31 

markers monomorphic for Morex and Steptoe, and failed markers leaving 64 OPA markers within the part 32 

of 6HS containing the Rrs18 region for mapping (Table S7). 33 

 34 

 35 

Mapping Rrs18 in SxM BC1S2 lines 36 

Selected lines from a SxM BC1 population developed by Phillips et al. (2015) were phenotyped with R. 37 

commune isolates L73a (detached leaf assay) and 271 (spray inoculation) and genotyped with 64 OPA (Table 38 

S7) and 2 exome capture-based SNP makers (Table S6, Table S8).  39 
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For R. commune isolate 271 the average symptom score 17 dpi was used as the phenotype for each 1 

line. A 2-tailed t test of association was carried out for the phenotypes for each marker allele. LOD scores 2 

were generated from the resulting P values, by converting the P values into a Likelihood ratio score (LRS). 3 

The LRS was then converted to a LOD score: LOD=LRS/(2 x ln10). The LOD score and physical position 4 

for each associated marker were plotted (Fig. 4a). The peak LOD for isolate 271 phenotypes -1.5 (a 1.5 LOD 5 

drop) was used to identify 95% confidence flanking markers. Statistical analysis was carried out using R (R 6 

Core Team 2012). 7 

In the case of L73a, the greatest average lesion size was calculated for each line. The list of scores 8 

was used for a 2-tailed t test of association for each marker allele. P values were converted to LOD scores 9 

(as described above) and the LOD score and physical position for each marker were plotted (Fig. 4b-c). 10 

Further phenotyping was carried out on 8 additional and 9 of 24 previously used genotyped SxM 11 

BC1S2 lines using a detached leaf assay with R. commune isolate L73a with up to 10 leaf replicates per line. 12 

The phenotypes from this experiment were combined with the L73a phenotypes of the previous mapping 13 

using a REML model. As before the greatest lesion size for each replicate was used in subsequent analysis. 14 

Lines were genotyped with 10 KASP markers across the Rrs18 interval and marker 11_10165 at position 15 

chr6H_14306329 (Table S5, Table S6, Table S9). To analyse the data, phenotypes and genotypes from these 16 

17 lines were combined with the data for the 24 SxM BC1S2 lines used for mapping previously. 11 marker 17 

genotypes for 24 SxM BC1S2 lines were predicted based on previous genotyping (Table S8). Marker 18 

associations with average greatest lesion size were tested using R package ‘lme4’ (Bates et al. 2015) by 19 

comparing a null REML model (fixed terms: Experiment, random terms: Family, Line, Box) with the same 20 

model but incorporating the marker allele as a fixed term using the ‘anova.lmerModLmerTest’ function of 21 

the ‘lmerTest’ package (Kuznetsova et al. 2017) using default argument values. P values were converted to 22 

LOD scores as previously described. The interval for the QTL was determined from a 1.5 LOD drop from 23 

the highest marker LOD score. Phenotypes were permuted 100 times and the 5th highest LOD was used as 24 

the 0.05 error rate. 25 

 26 

Identification of physical positions of markers associated with Rrs18 in barley genome sequence 27 

Sequence comparison using the IPK BLAST server (http://webblast.ipk-gatersleben.de/) on default settings 28 

was carried out using the primer sequences of markers associated with rhynchosporium resistance QTL on 29 

6HS, and flanking markers for Rrs13 in BC line 30 (Genger et al. 2003) and AB30 (Cheong et al. 2006). The 30 

August 2015 Barley pseudomolecule contigs were used as the subject of the BLASTn search. In all cases, 31 

the best hit was used to determine the physical position of the sequence matching the primer. 32 

In the case of the 64 OPA SNPs, BLASTn search with the default settings was used with the sequence 33 

manifest for each SNP against the 6HS barley pseudomolecule.  34 

 35 

Phenotyping of heterozygous SxM BC1 lines using isolate L73a 36 

To determine whether the resistance caused by Rrs18 is dominant, 6 SxM BC1S1 lines predicted to be 37 

heterozygous at Rrs18 locus were chosen, and 20 S2 seeds of each line were planted.  For the purpose of 38 

analysis in order to calculate background effects, 2 out of the 6 S1 lines chosen were selfed from the same 39 

SxM BC1 line, while the other 4 were selfed from another SxM BC1 line. S2 lines could be part of the same 40 

http://webblast.ipk-gatersleben.de/
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family (share the same SxM BC1 parent) or the same subfamily (share the same SxM BC1 S1 parent). Lines 1 

that grew were genotyped with KASP markers chr6H_10925141 and chr6H_11571800 (Table S6). All 2 

genotyped progeny from each of the 6 BC1S1 lines were tested with a goodness of fit test for expected 3 

genotype ratio of 1:2:1. All 6 BC1 S1 lines were found to have progeny that did not significantly deviate from 4 

the expected 1:2:1 genotype ratio (p=>0.05). Three SxM BC1 S2 lines with Steptoe, 3 with hetrozygous and 5 

3 with Morex genotypes at Rrs18 were chosen from each subfamily. Five leaf replicates all from the same 6 

leaf per line were phenotyped with R. commune isolate L73a using a detached leaf assay. In most cases the 7 

3rd leaf was used. Leaves were photographed at 14, 18, 22 and 26 dpi and images analysed using ImageJ 8 

(Abramoff et al. 2004). A REML analysis was carried out using the R package lme4, with the linear model 9 

~ Genotype + (Family\Subfamily\Line) used to predict means. Genotype was fitted as a fixed effect while 10 

(Family\Subfamily\Line) were included as random effects. The R package ‘predictmeans’ (https://cran.r-11 

project.org/web/packages/predictmeans/predictmeans.pdf) was used to calculate the average Least 12 

Significant Difference (LSD), to determine whether differences between genotype means were significant 13 

(Table 3). 14 

 15 

Sequencing of RNA from CIho 3515 and Alexis leaves and variant calling 16 

R. commune strain T-R214-GFP (Thirugnanasambandam et al. 2011), expressing green fluorescent protein 17 

(GFP), was used for inoculation of CIho 3515 and Alexis leaves, which allowed to confirm infection at 3 18 

dpi.  Second leaves of 3 weeks old CIho 3515 and Alexis plants were laid flat and gently rubbed with a paint 19 

brush prior to spot inoculation with 10 µl drops of spore suspension (2 x104 spore/ml) with ~ 15 mm gaps 20 

between drops. Plants were kept at 100% humidity for 3 days, at 18ºC, with the first 24 h in dark. Leaf 21 

samples for RNA extraction were taken at 3 dpi.  22 

Total RNA was extracted using the Qiagen RNeasy Plant Mini kit (Qiagen, UK) following the 23 

protocol supplied by the manufacturer. RNA concentration was estimated using a NanoDrop 24 

spectrophotometer (NanoDrop Technologies Inc., USA). RNA quality was assessed using a bioanalyser 25 

(Agilent Technologies, USA). One µg of RNA was used for TruSeq® RNA Sample Preparation following 26 

the manufacture’s protocol and sequencing was conducted on an Illumina NextSeq 550 System (Illumina 27 

Inc., UK).  28 

Total read counts for the RNA-seq samples of CIho 3515 and Alexis were 69,273,356 and 77,007,618 29 

respectively (2 x 76 bp paired end reads). The reads were mapped to the barley reference sequence (Mascher 30 

et al. 2017) using the splice mapping software STAR v. 2.5.3a (Dobin et al. 2013) with the parameters “--31 

twopassMode Basic--outBAMcompression 10 --outFilterMismatchNmax 1 --32 

outFilterMatchNminOverLread 0.97”. This set of parameters allows a single mismatch per read and a 33 

maximum of two per read pair and reduces mismapping-related false positive SNPs to a minimum (Ribeiro 34 

et al. 2015).  35 

Variants in the Rrs18 interval (10,904,998-11,579,918 bp) were called using the UnifiedGenotyper 36 

component from the Genome Analysis Toolkit v. 3.4.0 (GATK) (McKenna et al. 2010), using default 37 

settings, but with three additional flags required for a) spliced mappings (“-U 38 

ALLOW_N_CIGAR_READS”) and b) reassignment of MAPQ values to 60 as STAR does not output these 39 
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(“-rf ReassignMappingQuality -DMQ 60”). SNP effect annotation was carried out using the SnpEff tool 1 

(Cingolani et al. 2012). Visual spot checks of mappings and variant calls were carried out using Tablet (Milne 2 

et al. 2010a; Milne et al. 2013). 3 

The variant calls from CIho 3515 and Alexis were combined with a set of variant calls obtained for 4 

Steptoe, which were based on previously published (Russell et al. 2016) exome capture data (European 5 

Nucleotide Archive, accession number ERS243312, https://www.ebi.ac.uk/ena/data/view/ERS243312). 6 

Read mapping for this line was carried out in line with the GATK Best Practices pipeline (Van der Auwera 7 

et al. 2013), using BWA (Li and Durbin 2009) and the GATK v. 3.4.0 HaplotypeCaller. Details of the 8 

mapping and variant calling approach are published elsewhere (Bayer et al. 2017).  9 

The VCF files containing the calls from CIho 3515 and Alexis and that containing the Steptoe calls 10 

were merged using the GATK’s CombineVariants tool, and our own custom Java code was then used to 11 

further subset this file to only retain SNPs where 12 

• there were exactly two alleles present 13 

• there were no missing data 14 

• CIho 3515 and Alexis had different alleles 15 

The VCF file with the remaining SNPs was then converted using custom Java code and visualized with the 16 

Flapjack software (Milne et al. 2010b). 17 

 18 

 19 

Results 20 

 21 

Disease resistance 22 

The rhynchosporium-resistant cultivar Steptoe and line CIho 3515, along with barley line SBCC145 and 23 

cultivar Atlas (containing major rhynchosporium resistance genes Rrs1Rh4 and Rrs2 respectively), and four 24 

highly susceptible cultivars, Morex, Alexis, Beatrix and Steffi, were tested for resistance to 9 different R. 25 

commune isolates 271, UK7, R214, Rhy174, S147-1, LfL07, SGü4/3, Rhy17 and L73a (Table 1). The first 8 26 

isolates were individually used in spray inoculation of 3 weeks old barley plants while isolate L73a was used 27 

for inoculation of detached leaves. Barley landraces SBCC145 and CIho 3515 were highly resistant to all R. 28 

commune isolates used in this study apart from isolate L73a which caused smaller lesions on CIho 3515 29 

compared to susceptible cultivars Morex and Alexis (Table 1). Most isolates did not cause any symptoms on 30 

SBCC145 and CIho 3515 and isolates 271, UK7, Rhy174 and LfL07 caused very small lesions on the edge 31 

and the tip of some leaves resulting in mean infection scores ranging from 0.1 to 0.3 (Table 1). Most of the 32 

R. commune isolates tested were able to partially (in the case of isolates 271 and UK7) or completely (in the 33 

case of isolates R214, Rhy174, S147-1, LfL07, SGü4/3 and Rhy17) overcome Rrs2 resistance in cultivar 34 

Atlas. At the same time, cultivar Steptoe was resistant to R. commune isolates R214, Rhy174, S147-1 and 35 

LfL07, with mean infection scores ranging from 0.1 to 1.3. Cultivar Steptoe was also highly resistant to 36 

isolates 271 and UK7, with mean infection score of 0.9 and 0 respectively, moderately susceptible to isolate 37 

SGü4/3, with mean infection score of 2.0, and highly susceptible to isolate Rhy17, with mean infection score 38 

of 4.0. Cultivars Alexis, Beatrix and Steffi were susceptible to all isolates tested, reaching mean infection 39 

https://www.ebi.ac.uk/ena/data/view/ERS243312


 11  
 

scores of 2.9 - 4.0, while cultivar Morex was susceptible to all isolates tested, with mean infection scores of 1 

2.8 - 4.0, apart from isolate R214 causing mean infection scores of 1.3 (Table 1). Isolate Rhy17 was 2 

recognised by barley landraces SBCC145 and CIho 3515 containing Rrs1Rh4, but not by Steptoe, suggesting 3 

that Steptoe does not have Rrs1Rh4. These results suggested that cultivar Steptoe might contain an R gene 4 

different to Rrs1Rh4 and Rrs2. 5 

Previously a population of 200 DH lines derived from a cross between cultivars Steptoe and Morex 6 

was used to generate mRNA transcript abundance, trait and genotypic data sets (Druka et al. 2008). 140 lines 7 

from this mapping population were assessed for resistance to R. commune isolates 271 and UK7 (Fig. 1). 8 

Mean disease scores for parental lines were on average 1.9 for Steptoe and 2.4 for Morex with isolate 271, 9 

and 0.0 for Steptoe and 3.1 for Morex with isolate UK7 (Fig.1a-b). Mean disease scores for the population 10 

were 2.2 and 1.0 for isolates 271 and UK7 respectively (Fig.1a-b). Phenotyping with isolate 271 resulted in 11 

a 1:1.7 ratio of resistant and susceptible lines, suggesting that more than one resistance gene was segregating. 12 

With isolate UK7 however, the resistant to susceptible (R:S) ratio was 3.3:1, with most lines having a disease 13 

score of less than 1, suggesting the presence of 2 resistance loci in the population, both conveying full 14 

resistance and both segregating 1:1 (Expected segregation ratio (R:S) =3:1; χ²=0.17, p=0.68). 15 

Another population used in this study was the CxA DH population, developed to characterise CIho 16 

3515 resistance to rhynchosporium. The CxA DH population showed highly differential response to 3 R. 17 

commune isolates LfL07, S147-1 and Rhy174. The response to isolates LfL07 and S147-1 was characterized 18 

by a disproportionally high number of fully resistant lines and very few lines with an intermediate reaction, 19 

especially in case of isolate S147-1 (Fig. 2a-b). This led to population mean disease scores of 1.1 and 0.8 for 20 

isolates LfL07 and S147-1 respectively (Fig. 2a-b). Inoculation with isolate Rhy174 resulted in very few DH 21 

lines without disease symptoms (Fig. 2c). A high number of lines displayed medium resistance with scores 22 

between 1 and 2, and about half of the DH lines were fully susceptible with a score of 4, resulting in the 23 

population mean disease score of 2.6 (Fig. 2c). Phenotyping with isolates LfL07 and S147-1 resulted in a 24 

3.3:1 and 4.2:1 R:S ratio respectively, suggesting presence of more than 1 resistance loci in the population 25 

(Expected segregation ratio (R:S) =1:1; χ²=66.7, p<0.01; χ²=90.4, p=0.04). In the case of isolate Lfl07 there 26 

is strong support for the presence of two resistance genes, each segregating 1:1 and conferring complete 27 

resistance (Expected segregation ratio (R:S) = 3:1 χ²=0.27, p=0.6) (Table 2, Fig. 2c). Phenotyping with 28 

isolate Rhy174 resulted in an approximately 1:1 ratio of resistant and susceptible lines, implying that one 29 

locus is active conveying partial resistance (Expected segregation ratio (R:S) =1:1; χ²=3.3, p=0.07) (Table 2, 30 

Fig. 2c). 31 

 32 

Mapping rhynchosporium resistance loci in SxM and CxA DH populations 33 

A single environment QTL analysis was carried out on SxM DH population using average disease scores 34 

after infection with R. commune isolates 271 and UK7, and a genome wide significance threshold of 0.05. In 35 

the case of isolate 271, 4 significant QTL were identified on chromosomes 3H, 6H and 7H (Table 2, Fig. 1c). 36 

The largest QTL on 6H, qS271_6a explained 30% of the phenotypic variation, with Steptoe providing the 37 

resistant allele (Table 2, Fig. 1c). QTL qS271_3, that mapped to the centromeric region of 3H, explained 38 

12.6 % of the phenotypic variation (Table 2). The minor QTL qS271_6b explained 9.6 % of the phenotypic 39 

variation; Morex provided the resistant allele (Table 2, Fig. 1c). Another minor QTL qS271_7 explained 7.4 40 
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% of the phenotypic variation, with Steptoe providing the resistant allele (Table 2, Fig. 1c). With isolate 1 

UK7, two highly significant QTL were identified on 6H and 3H (qSUK7_6, qSUK7_3), with a minor QTL 2 

on 5H (qSUK7_5) which explained 6.9% of the phenotypic variation (Table 2, Fig. 1d). QTL qSUK7_6 and 3 

qSUK7_3 explained 41 % and 30.4 % of the total phenotypic variation respectively, with Steptoe providing 4 

the resistant allele in both cases (Table 2, Fig. 1d).  qSUK7_6 mapped between 7.89 and 12.01 Mb, which is 5 

within the interval for qS271_6a (Table 2).  qSUK7_3 at 201.16 – 508.77 Mb includes the Rrs1Rh4 region, 6 

defined by flanking markers 11_0010 and 11_0823 (Hofmann et al. 2013) at 489,991,522 and 491,895,585 7 

Mb respectively (Looseley et al. 2018). It is at a different position from the less significant QTL qS271_3, 8 

which is located between 591.89 and 617.76 Mb on chromosome 3H (Table 2). Furthermore, the resistant 9 

allele for qSUK7_3 is from Steptoe, while the resistant allele for qS271_3 comes from Morex (Table 2). 10 

The QTL analyses identified 2 major loci in CIho 3515 contributing considerably to the resistance to 11 

isolates LfL07, S147-1 and Rhy174, one on chromosome 3H and one on chromosome 6H (Fig. 2d). The 12 

dominating source of resistance to isolates LfL07 and S147-1were the QTL qC07_3 and qC147_3 on 13 

chromosome 3H, explaining 63.7 and 59.5 % of the phenotypic variation, with the QTL qC07_6 and 14 

qC147_6 on chromosome 6H contributing 6.3 and 11.7 % of the phenotypic variation respectively (Table 2). 15 

The dominating source of resistance to isolate Rhy174 was the QTL qC174_6 explaining 68.9 % of the 16 

phenotypic variation, whereas the QTL qC174_3 contributed only 3.9 % of the phenotypic variation (Table 17 

2, Fig. 2d). qC07_3 and qC147_3 at 457.98 - 542.28 Mb, and qC174_3 at 457.98 - 557.36 Mb include the 18 

Rrs1Rh4 region (Table 2). 19 

 20 

Physical positions of rhynchosporium resistance loci on 6HS 21 

Physical positions on the Morex pseudomolecule 6HS (Mascher et al. 2017) were identified for markers 22 

Cxp3, BMag500 and MWG916, the closest available flanking markers for Rrs13 (Genger et al. 2003; Cheong 23 

et al. 2006), and for the flanking markers 2_0262 and 1_1479, and U35_24165 and U35_40281 for the 24 

resistance QTL identified on 6H in the SxM and CxA DH populations respectively. 25 

The flanking markers for the major resistance gene Rrs13 were found to be at a different locus to 26 

rhynchosporium resistance QTL identified on 6H in the SxM and CxA DH populations (Fig. 3). The flanking 27 

markers most closely associated with Rrs13 (Cheong et al. 2006) had matching sequence at 16.14 and 29.10 28 

Mb on the Morex pseudomolecule 6HS. The flanking markers identified for the resistance locus present in 29 

the CxA DH population were mapped to 10.01 and 12.05 Mb respectively (Table 2, Fig. 3). This overlapped 30 

with the SxM resistance locus at 7.89 to 12.01 Mb (Table 2, Fig. 3).   31 

 32 

Further mapping of rhynchosporium resistance QTL from Steptoe on chromosome 6HS  33 

To further map rhynchosporium resistance QTL on 6HS 284 lines containing both monomorphic and 34 

polymorphic markers between OPA markers 11_10669 and 11_10023 (Close et al. 2009), mapped to 3.9 and 35 

24.4 cM on 6HS respectively (Table S3), were selected from a SxM BC1 population developed and originally 36 

genotyped by Phillips et al. (2015). The selected lines were selfed, grown and genotyped with 4 OPA 37 

markers: 11_10669, 11_21032, 11_10165 and 11_10023 (Close et al. 2009) (Table S3, Table S5). Seeds 38 

from 24 SxM BC1S2 lines that were found to be homozygous between 3.9 and 24.4 cM on 6HS were grown 39 

for phenotyping with R. commune isolates 271 (spray inoculation) and L73a (detached leaf assay) and 40 
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genotyping with 64 OPA and 2 exome capture based SNP makers (Table S8). 18 lines were known to contain 1 

a Steptoe introgression, while 6 chosen lines known to carry only Steptoe or Morex alleles were used as 2 

controls. Both isolates were able to cause disease symptoms on resistant lines (Table S8). Susceptible 3 

controls infected with R. commune isolate 271 did not reach the expected maximum score of 4, suggesting 4 

that the pathogen has lost some of its ability to cause infection. Line SM_BC1_FM_25_10_3 carrying the 5 

resistant Steptoe allele had a moderately resistant score when inoculated with isolate 271, while large lesions 6 

formed on the Steptoe allele carrying line SM_BC1_MF_15_07_06 following inoculation with isolate L73a 7 

(Table S8). Mean infection score with isolate 271 was 0.9 and 2.3 for resistant and susceptible lines 8 

respectively (Table S8), in agreement with previous average scores for Steptoe and Morex with isolate 271, 9 

Table 1, Table S1, Fig.1a). Mean lesion size with isolate L73a was 8.5 and 12.7 mm for resistant and 10 

susceptible lines respectively (Table S8). The resistance locus on 6HS accounted for 75 % and 52 % of the 11 

total phenotypic variation when using isolate 271 and L73a respectively. Mapping with isolate L73a gave a 12 

1.5 LOD support interval between 9.19 and 13.88 Mb, while mapping with isolate 271 resulted in a slightly 13 

higher resolution with 1.5 LOD support interval of 9.08 and 11.78 Mb on 6HS (Fig. 4a-b). 14 

To find additional lines suitable for fine mapping, seed from SxM BC1 lines (Philips et al. 2015) that 15 

had a recombination event between OPA markers 11_21032 and 11_11479 (Fig. 5), were grown (SxM BC1 16 

S1) and genotyped using markers chr6H_ 9620201 and chr6H_ 12057992 (Table S6). Seed from 8 lines 17 

which were homozygous for the previously identified recombination were grown for further fine mapping. 18 

To further narrow down the Rrs18 interval 9 additional KASP markers were designed within the 9.62-12.57 19 

Mb interval to allow identification of SxM BC1S2 lines with additional recombination events (Fig. 5, Table 20 

S6, Table S9). The final mapping experiment was based on genotypes and average greatest lesion size, 21 

following inoculation with R. commune isolate L73a, for the set of 30 SxM BC1S2 lines (Table S9). 22 

Recombination between KASP markers chr6H_10925141 and chr6H_11264412 was detected in 2 23 

susceptible lines: SM_BC1_FM_15_23_2_2_3 and SM_BC1_FM_15_23_3_16 (Fig. 5, Table S9). 24 

Recombination between KASP markers chr6H_11572955 and chr6H_11581565 was detected in another 2 25 

lines: resistant line SM_BC1_MF_15_12_04 and susceptible line SM_BC1_MF_15_13_01_19 (Fig. 5, 26 

Table S9). No further recombination has been detected between 3 KASP markers, chr6H_11264412, 27 

chr6H_11571800 and chr6H_11572955 (Fig. 5, Table S9). This mapping put the Rrs18 interval between 28 

10.96 and 11.58 Mb on 6HS (Fig. 4c). The interval calculated by 1.5 LOD drop corresponds to recombination 29 

events at around 10.92 and 11.58 Mb, which is within the interval defined by  KASP markers 30 

chr6H_10925141 and chr6H_11581565 (Fig. 4c, Fig. 5, Table S9). This estimate gave an interval for Rrs18 31 

of approximately 660 kb, according to the latest barley genome assembly of cultivar Morex (Mascher et al. 32 

2017).  33 

 34 

Testing of Rrs18 dominance  35 

The vast majority of plant R genes are dominant. In order to determine whether the Rrs18 resistance is also 36 

dominant a detached leaf assay with the R. commune isolate L73a was carried out on SxM BC1S2 lines with 37 

a genotype in the Rrs18 region of either homozygous Steptoe, homozygous Morex or heterozygous. 17 lines 38 

of each genotype were included. Lines with a homozygous Morex genotype were found to have significantly 39 

larger lesions than those with a homozygous Steptoe genotype (Table 3), consistent with the previously 40 
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described mapping experiments. Lines which were heterozygous at Rrs18 had a mean maximum lesion size 1 

significantly smaller than those with the homozygous Morex genotype, but not significantly different from 2 

those with the homozygous Steptoe genotype. This result strongly suggests that Rrs18 is dominant. 3 

 4 

Genes within Rrs18 interval and Rrs18-specific SNPs 5 

The 660 kb Rrs18 interval contains 11 high confidence and 10 low confidence genes according to the latest 6 

Morex genome annotation (Mascher et al. 2017). At closer examination 4 out of 10 low confidence genes 7 

appeared misannotated and were removed, leaving a total of 17 genes (Table 4, Fig. 5). 8 

HORVU6Hr1G005120 was annotated as an F-box domain protein, though conflicting information in the 9 

original annotation suggests it might be a transposable element. HORVU6Hr1G005150 and 10 

HORVU6Hr1G005170 were annotated as two-component response regulator ARR11, while they match 11 

hornerin-like protein, with a BLASTx e-value of 8e-29 and 7e-28 respectively (Table 4). 12 

Reads for only 4 genes within the Rrs18 interval were present in the RNA-seq data for both CIho 13 

3515 and Alexis (Table 4-5, Fig. 5), suggesting that the remaining genes are not transcribed in leaves of 14 

barley seedlings. All of the transcribed genes were annotated as high confidence genes (Mascher et al. 2017). 15 

They include HORVU6Hr1G005080, annotated as elongation factor P; HORVU6Hr1G005240, annotated as 16 

pentatricopeptide repeat-containing protein; HORVU6Hr1G005250, annotated as an allene oxide synthase 17 

and HORVU6Hr1G005260, annotated as a protein kinase (Table 4). HORVU6Hr1G005260’s predicted 18 

protein sequence contains a potential extracellular domain with a signal peptide, a transmembrane domain 19 

and a serine/threonine kinase domain, making it the most likely candidate for the Rrs18 (Table 4). 20 

Given the similarity in map position of Rrs18 in SxM and CxA DH populations (Fig. 1-2), it is highly 21 

likely that resistance on 6HS is caused by the same gene in Steptoe and CIho3515. If the difference in 22 

phenotype is caused by a variant or variants present in one of the candidate genes, those variants should be 23 

shared between CIho 3515 and Steptoe, and absent in susceptible lines. To compare the 4 parental lines, 24 

variants were identified between CIho 3515 and Alexis in Rrs18 region (10.92 - 11.58Mb) and compared to 25 

alleles in Steptoe and Morex (Table 5). All 4 genes with RNA-seq reads contained variants between CIho 26 

3515 and Alexis, with 19 SNPs in total identified within genes in this region (Table 5). Six out of these 19 27 

variants had the same allele present in CIho 3515 and Steptoe, with the alternative allele present in Alexis 28 

and Morex. One of these SNPs was present in putative elongation factor P HORVU6Hr1G005080, 4 SNPs 29 

were found in the putative allene oxide synthase HORVU6Hr1G005250 and 1 SNP in putative protein kinase 30 

HORVU6Hr1G005260. Only 2 out of 6 SNPs differentiating between CIho 3515 and Steptoe, and Alexis 31 

and Morex could result in non-synonymous substitution: chr6H_11518293 in putative allene oxide synthase 32 

HORVU6Hr1G005250, leading to a change from leucine to valine, and chr6H_11571800 in putative protein 33 

kinase HORVU6Hr1G005260, leading to a change from threonine to alanine (Table 5). Additional analysis 34 

of these two SNPs with PROVEAN (http://provean.jcvi.org/seq_submit.php) revealed that in both cases the 35 

amino acid substitutions are neutral and have no deleterious effect on the protein.  36 

 37 

 38 

Discussion  39 

http://provean.jcvi.org/seq_submit.php
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Previous studies have identified multiple QTL conferring resistance to rhynchosporium on the distal 1 

end of chromosome 6H (Jensen et al. 2002; Cheong et al. 2006; Shtaya et al. 2006; Wagner et al. 2008; Wang 2 

et al. 2014). While Cheong et al. (2006) suggested that rhynchosporium resistance identified on 6HS in a 3 

Schooner/O’Connor population could be a new locus independent of Rrs13, due to the difficulty of 4 

comparing genetic maps and sparsity of molecular markers it was not clear whether this and other QTL 5 

represented alleles of Rrs13 or an entirely different resistance locus.  6 

Previously Spanish landrace CIho 3515 has been found to contain two resistance loci: Rrs1Rh4 and a 7 

second resistance gene proposed to be Rrs13 by Hofmann et al. (2013).  In this study the QTL analyses also 8 

identified 2 resistance loci in CIho 3515, one containing the Rrs1interval on chromosome 3H and one on 9 

chromosome 6H (Table 2, Fig. 2d). 10 

The initial testing of barley cultivar Steptoe for resistance to R. commune isolates with different race 11 

specificities showed that while it was fully or partially resistant to most of the R. commune isolates used, it 12 

was highly susceptible to isolate Rhy17, which was recognised by barley landraces SBCC145 and CIho 3515 13 

containing Rrs1Rh4, suggesting that Steptoe does not have Rrs1Rh4., but might contain a different R gene. The 14 

QTL analysis carried out on SxM DH population following inoculation with R. commune isolates 271 and 15 

UK7 showed that the biggest effect, explaining 30% and 41 % of the phenotypic variance, respectively, was 16 

explained by the QTL on 6HS, with Steptoe providing the resistant allele (Table 2, Fig. 1c). 17 

The availability of a near complete reference barley genome sequence (Mascher et al. 2017) has 18 

enabled identification of physical map positions of a variety of genetic markers, allowing a direct comparison 19 

between independent genetic maps. Flanking markers for resistance identified in the SxM and CxA DH 20 

populations on 6HS were located at 7.89 and 12.01, and at 10.01 and 12.05 Mb respectively (Table 2), while 21 

the most recent flanking markers for Rrs13, identified by Cheong et al. (2006), mapped to the 6H 22 

pseudomolecule at 16.14 and 29.10 Mb, clearly suggesting the presence of two resistance loci (Fig. 3). 23 

Previously Zhan et al. (2008) suggested that the name Rrs17 should be assigned to Rrs15CIho8288 as it was 24 

found at a different locus to Rrs15 on 7H (Dahleen 2006; Zhan et al. 2008). Therefore, we suggest that the 25 

resistance locus identified as a QTL on 6HS in SxM and CxA populations should be designated Rrs18.  26 

The QTL on 6H in Post x Vixen population was identified using isolate 271 (Wagner et al. 2008), the 27 

same isolate as was used for fine mapping with SxM BC1 lines. Flanking markers for a QTL effect previously 28 

identified in 3 cultivars Keele, Harrington and O’Connor (Cheong et al. 2006) can also be located to the same 29 

physical position as the Rrs18 locus. The QTL identified by Cheong et al. (2006) was found using natural 30 

inoculum, and the position of the QTL peak (at marker ABG378), strongly suggests that the QTL effect 31 

represents an allele of Rrs18. A single major resistance gene identified in a Vlamingh x WABAR2147 DH 32 

population by Wang et al. (2014) on 6HS has flanking markers 1_1166 and Bmag500, located at 7.47 Mb 33 

and 16.14 Mb respectively, putting this QTL also in the vicinity of Rrs18. The resistance gene on 6HS in 34 

WABAR2147 was shown to be effective irrespective of growth stage, so if the conclusion that this resistance 35 

is an allele of Rrs18 is correct, it would suggest that Rrs18 would provide an effective resistance in the field 36 

(Wang et al. 2014).  37 

Another highly significant QTL to R. commune isolate UK7 identified using SxM DH population on 38 

3H, qSUK7_3, which explained 30.4 % of the total phenotypic variation, with Steptoe providing the resistant 39 

allele, is in a similar physical position to that of Rrs1Rh4 (Table 2). However, Rhy17 which is recognised by 40 
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Rrs1Rh4 is virulent on Steptoe (Table 1), suggesting strongly that Rrs1Rh4 is not present in Steptoe. Multiple 1 

rhynchosporium resistance QTL have been identified on 3H using different isolates and different 2 

backgrounds (Zhan et al. 2008), though the race specific nature of qSUK7_3 suggests it could be another 3 

major resistance gene. QTL qSUK7_3 was mapped to a large interval overlapping with the Rrs1 region 4 

identified in the CxA population (Fig. 1d, Fig. 2) but quite far from Rrs4, which is located closer to the 5 

telomere (Patil et al. 2003, Zhan et al. 2008).  6 

The fine mapping of Rrs18 with R. commune isolate L73a was confirmed using isolate 271, which 7 

was used for the original SxM DH QTL mapping (Fig. 1a, Fig. 4b). Independent mapping with each of these 8 

isolates resulted in similar physical intervals of 9.19-13.88 Mb for isolate L73a, and 9.08-11.78 Mb for isolate 9 

271. Further fine mapping using L73a narrowed down the Rrs18 interval to 660 kb, 10.92-11.58 Mb (Fig. 10 

4c).  11 

Given the similar map positions, and the fact that each population shows the same response to specific 12 

isolates, it is reasonable to assume that the resistance QTL on 6HS in SxM and CxA populations contains the 13 

same resistance gene. Therefore, the gene causing resistance in Steptoe should have some allelic similarity 14 

to the gene in CIho 3515 with alternative allele(s) in Morex and Alexis. Obviously the Rrs18 gene should be 15 

expressed in Steptoe and CIho 3515. All 4 transcribed genes within Rrs18 region showed sequence variants 16 

between CIho 3515 and Alexis, though only 3 of them, including a putative protein kinase, a putative allene 17 

oxide synthase and a putative elongation factor P, had SNPs specific to Steptoe and CIho 3515, compared to 18 

Morex and Alexis (Table 5). Furthermore, only 2 of these SNPs could lead to a non-synonymous substitution: 19 

one SNP in putative allene oxide synthase HORVU6Hr1G005250, and one SNP in putative protein kinase 20 

HORVU6Hr1G005260 (Table 5). 21 

Allene oxide synthase is the first enzyme involved in the so-called LOX pathway leading to synthesis 22 

of the plant hormone jasmonic acid (JA) (Maucher et al., 2000). JA is generally associated with regulation 23 

of defence genes, in particular - against nectrotrophic pathogens and insects, while salicylic acid (SA), 24 

another plant hormone, is associated with regulating genes involved in defence against biotrophic pathogens 25 

(Glazebrook, 2005). Despite its association with plant defence against pathogens, as an enzyme and not a 26 

receptor, allene oxide synthase is an unlikely candidate for an R gene.  27 

Like many other agronomically important pathogens including, Zymoseptoria tritici, Mycosphaerella 28 

fijiensis, Cladosporium fulvum and Leptosphaeria maculans, causing major diseases affecting wheat, banana, 29 

tomato and oilseed rape, respectively, R. commune colonises the plant extracellular space (Jones and Ayres 30 

1974; Lehnackers and Knogge 1990; Thirugnanasambandam et al. 2011; Stotz et al. 2014). Therefore, its 31 

effectors, or their effect on the plant, are likely to be recognised at the plant cell surface by R genes encoding 32 

cell surface-localised receptor-like kinases (RLKs) or receptor-like proteins (RLPs) (Avrova and Knogge 33 

2012; Stotz et al. 2014, Saintenac et al. 2018). Three tomato R genes against C. fulvum, Cf-2, Cf-4 and Cf-9, 34 

are RLPs shown to interact with the RLK SOBIR1/EVR for downstream signalling and defence (Liebrand, 35 

et al. 2013). Oilseed rape resistance against L. maculans and apple (Malus domestica) resistance against V. 36 

inaequalis also involve RLPs (Larkan et al. 2013; Vinatzer et al. 2001; Xu and Korban 2002). Recently the 37 

wheat receptor kinase-like protein Stb6 has been shown to control gene-for-gene resistance to Z. tritici 38 

(Saintenac et al. 2018). Similar to Rrs18, Stb6 confers pathogen resistance in the absence of a hypersensitive 39 

response (Saintenac et al. 2018). 40 
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Our results showed Rrs18 to be dominant, making the putative protein kinase HORVU6Hr1G005260 1 

the most likely candidate. The predicted protein sequence of HORVU6Hr1G005260 contains a potential 2 

extracellular domain with a signal peptide, a transmembrane domain and a serine/threonine kinase domain. 3 

It has one SNP matching the expected allele segregation leading to a non-synonymous substitution in the 4 

potential extracellular receptor domain (Table 5). As the amino acid substitution is neutral and has no 5 

deleterious effect on the protein due to its position outside the catalytic domain, it fits with the hypothesis 6 

that this particular protein kinase evolved to recognise the presence of R. commune. Similar to 7 

HORVU6Hr1G005260, the susceptible haplotype of Stb6, differs from the resistant haplotype by a single 8 

nonsynonymous SNP, in this case in the S/T kinase domain (Saintenac et al. 2018). Further tests are needed 9 

to find out whether any of the identified SNPs correlate with the presence/absence of Rrs18 in other 10 

genotypes. 11 

HORVU6Hr1G005260 is highly similar (94 % identity) to a cysteine-rich receptor kinase NCRK 12 

from Aegilops tauschii subsp. tauschii. NCRK from Arabidopsis was shown to interact with Rop GTPase at 13 

the plant plasma membrane (Molendijk et al. 2008). In plants, Rop GTPases are central regulators of diverse 14 

signalling pathways in plant growth and, most importantly in this case, pathogen defence.  15 

Another possibility is that Rrs18 is not present in susceptible Morex and further sequencing of RNA 16 

from the resistant lines, containing Rrs18 and de novo assembly might reveal additional candidate gene(s). 17 

In addition, sufficiently replicated RNA-seq analysis would allow assessment of whether any of the genes 18 

within the Rrs18 interval are differentially expressed between the resistant and susceptible parents. 19 

Ultimately, transformation of susceptible barley cultivar Golden Promise with the resistant allele of the 20 

identified candidate gene(s) for Rrs18 is needed to confirm its function.  21 

 22 

 23 

Author contribution statement 24 

MC, KH, GS, MEL and AA designed the experiments. MC, BB, KH and MEL performed the experiments. 25 

MC, KH, MB, MEL and AA analysed the data. MC, MEL and AA wrote the manuscript with input from 26 

BB, MB, LR, GS and RW. 27 

 28 

 29 

Acknowledgments  30 

This work was funded by the Scottish Food Security Alliance (SFSA) and the Bavarian State Ministry of 31 

Food, Agriculture and Forestry. MB, LR, RW, MEL and AA were supported by the Scottish Government 32 

Rural and Environment Science and Analytical Services (RESAS). AA and MB were also funded by the 33 

BBSRC-CIRC project BB/J019569/1. KH was supported by the Federal Office of Agriculture and Food 34 

(BLE) under grant-no 28-1-41.009-06.  35 

 36 

 37 

Conflict of interest  38 

The authors declare that they have no conflict of interest. 39 



 18  
 

 1 

 2 

References 3 

Abbott DC, Burdon JJ, Jarosz AM, Brown AHD, Muller WJ, Read BJ (1991) The relationship between 4 

seedling infection types and field reactions in Clipper barley backcross lines. Aust J Agric Res 42:801-5 

809 6 

Abbott DC, Lagudah ES, Brown AHD (1995) Identification of RFLPs flanking a scald resistance gene on 7 

barley chromosome 6. J Heredity 86:152-154 8 

Abramoff MD, Magalhães PJ, Ram SJ (2004) Image Processing with ImageJ. Biophotonics Internat 11:36-9 

42 10 

Avrova A, Knogge W (2012) Rhynchosporium commune: a persistent threat to barley cultivation. Mol Plant 11 

Pathol 13:986-997 12 

Bates D, Maechler M, Bolker B, Walker S (2015) Fitting Linear Mixed-Effects Models Using lme4. J 13 

Statistical Software 67:1-48 14 

Bayer MM, Rapazote-Flores P, Ganal M, Hedley PE, Macaulay M, Plieske J, Ramsay L, Russell J, Shaw 15 

PD, Thomas W, Waugh R (2017) Development and Evaluation of a Barley 50k iSelect SNP Array. 16 

Front Plant Sci doi: 10.3389/fpls.2017.01792 17 

Behn A, Hartl L, Schweizer G, Wenzel G, Baumer M (2004) QTL mapping for resistance against non-18 

parasitic leaf spots in a spring barley doubled haploid population. Theor Appl Genet 108:1229-19 

1235 20 

Bjørnstad A, Patil V, Tekauz A, Maroy AG, Skinnes H, Jensen A, Magnus H, MacKey J (2002) Resistance 21 

to scald (Rhynchosporium secalis) in barley (Hordeum vulgare) studied by near-isogenic lines: I. 22 

Markers and differential isolates. Phytopathol 92:710-720 23 

Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. 24 

Bioinformatics (Oxford, England) 19:889-890 25 

Cheong J, Williams K, Wallwork H (2006) The identification of QTLs for adult plant resistance to leaf scald 26 

in barley. Aust J Agric Res 57:961-965 27 

Cingolani P, Platts A, Wang LL, Coon M, Tung N, Wang L, Land SJ, Lu X, Ruden DM (2012) A program 28 

for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the 29 

genome of Drosophila melanogaster strain w(1118); iso-2; iso-3. Fly 6:80-92. doi: 10.4161/fly.19695 30 

Close TJ, Bhat PR, Lonardi S, Wu Y, Rostoks N, Ramsay L, Druka A, Stein N, Svensson J, Wanamaker S, 31 

Bozdag S, Roose M, Moscou M, Chao S, Varshney R, Szucs P, Sato K, Hayes P, Matthews D, 32 

Kleinhofs A, Muehlbauer G, DeYoung J, Marshall D, Madishetty K, Fenton R, Condamine P, Graner 33 

A, Waugh R (2009) Development and implementation of high-throughput SNP genotyping in barley. 34 

BMC Genomics 10:582-594 35 

Dahleen LS (2006) Coordinator’s report: chromosome 7H. Barley Genetics Newsletter 36:63-65 36 

Davis H, Fitt BD (1990) Symptomless infection of Rhynchosporium secalis on leaves of winter barley. Mycol 37 

Res 94:557-560 38 



 19  
 

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M and Gingeras TR 1 

(2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15-21. doi: 2 

10.1093/bioinformatics/bts635 3 

Druka A, Druka I, Centeno AG, Li H, Sun Z, Thomas WTB, Bonar N, Steffenson BJ, Ullrich SE, Kleinhofs 4 

A, Wise RP, Close TJ, Potokina E, Luo Z, Wagner C, Schweizer GF, Marshall DF, Kearsey MJ, 5 

Williams RW, Waugh R (2008) Towards systems genetic analyses in barley: Integration of 6 

phenotypic, expression and genotype data into GeneNetwork. BMC Genet 9:73-83 7 

Genger RK, Brown AHD, Knogge W, Nesbitt K, Burdon JJ (2003) Development of SCAR markers linked 8 

to a scald resistance gene derived from wild barley. Euphytica 134:149-159 9 

Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Ann 10 

Rev Phytopathol 43:205-227 11 

Habgood MR, Hayes JD (1971) The inheritance of resistance to Rhynchosporium secalis in barley. Heredity 12 

27:25–37 13 

Hanemann A, Schweizer GF, Cossu R, Wicker T, Röder MS (2009) Fine mapping, physical mapping and 14 

development of diagnostic markers for the Rrs2 scald resistance gene in barley. Theor Appl Genet 15 

119:1507-1522 16 

Hofmann K, Silvar C, Casas AM, Herz M, Büttner B, Gracia MP, Contreras-Moreira B, Wallwork H, Igartua 17 

E, Schweizer G (2013) Fine mapping of the Rrs1 resistance locus against scald in two large 18 

populations derived from Spanish barley landraces. Theor Appl Genet 126:3091-3102 19 

IBSC International Barley Genome Sequencing Consortium (2012) A physical, genetic and functional 20 

sequence assembly of the barley genome. Nature 491:711-716 21 

Jackson LF, Webster RK (1976) Race differentiation, distribution, and frequency of Rhynchosporium secalis 22 

in California. Phytopathol 66:719-725 23 

Jenkins JEE, Jemmett JL (1967) Barley leaf blotch. NAAS Quarterly Review 75:127-132 24 

Jensen J, Backes G, Skinnes H, Giese H (2002) Quantitative trait loci for scald resistance in barley localized 25 

by a non-interval mapping procedure. Plant Breed 121:124-128 26 

Jones P, Ayres PG (1974) Rhynchosporium leaf blotch of barley studied during the subcuticular phase by 27 

electron microscopy. Physiol Plant Pathol 4:229-233 28 

Kleinhofs A, Kilian A, Saghai Maroof MA, Biyashev RM, Hayes P, Chen FQ, Lapitan N, Fenwick A, Blake 29 

TK, Kanazin V, Ananiev E, Dahleen L, Kudrna D, Bollinger J, Knapp SJ, Liu B, Sorrells M, Heun 30 

M, Franckowiak JD, Hoffman D, Skadsen R, Steffenson BJ (1993) A molecular, isozyme and 31 

morphological map of the barley (Hordeum vulgare) genome. Theor Appl Genet 86:705-712 32 

Kuznetsova A, Brockhoff PB, Christensen RHB (2017) lmerTest Package: Tests in Linear Mixed Effects 33 

Models. J Statistical Software 82:1-26 34 

Larkan NJ, Lydiate DJ, Parkin IAP, Nelson MN, Epp DJ, Cowling WA, Rimmer SR, Borhan MH (2013) 35 

The Brassica napus blackleg resistance gene LepR3 encodes a receptor-like protein triggered by the 36 

Leptosphaeria maculans effector AVRLM1. New Phytol 197:595-605 37 

Lehnackers H, Knogge W (1990) Cytological studies on the infection of barley cultivars with known 38 

resistance genotypes by Rhynchosporium secalis. Can J Bot 68:1953-1961 39 



 20  
 

Li J, Ji L (2005). Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation 1 

matrix. Heredity 95:221-227 2 

Li JZ, Sjakste TG, Röder MS, Ganal MW (2003) Development and genetic mapping of 127 new 3 

microsatellite markers in barley. Theor Appl Genet 107:1021-1927 4 

Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. 5 

Bioinformatics 25:1754-1760 6 

Liebrand TWH, van den Berg GCM, Zhang Z, Smit P, Cordewener JHG, America AHP, Sklenar J, Jones 7 

AME, Tameling WIL, Robatzek S, Thomma BPHJ, Joosten MHAJ (2013) Receptor-like kinase 8 

SOBIR1/EVR interacts with receptor-like proteins in plant immunity against fungal infection. Proc 9 

Natl Acad Sci USA 110:10010-10015 10 

Looseley ME, Griffe LL, B ttner B, Wright KM, Middlefell-Williams J, Bull H, Shaw PD, Macaulay 11 

M, Booth A, Schweizer G, Russell JR, Waugh R, Thomas WTB, Avrova A (2018) Resistance 12 

to Rhynchosporium commune in a collection of European spring barley germplasm. Theor Appl 13 

Genet doi: 10.1007/s00122-018-3168-5 14 

Marzin S, Hanemann A, Sharma S, Hensel G, Kumlehn J, Schweizer G, Röder MS (2016) Are PECTIN 15 

ESTERASE INHIBITOR Genes Involved in Mediating Resistance to Rhynchosporium commune in 16 

Barley? PLoS ONE 11:e0150485 17 

Mascher M, Richmond TA, Stein N (2013) Barley whole exome capture: a tool for genomic research in the 18 

genus Hordeum and beyond. Plant J 76:494-505 19 

Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, Radchuk V,  Dockter C, 20 

Hedley PE, Russell J, Bayer M, Ramsay L, Liu H, Haberer G, Zhang X-Q, Zhang Q, Barrero RA, Li 21 

L, Taudien S, Groth M, Felder M, Hastie A, Šimková H, Staňková H, Vrána J, Chan S, Muñoz-22 

Amatriaín M, Ounit R, Wanamaker S, Bolser D, Colmsee C, Schmutzer T, Aliyeva-Schnorr L, Grasso 23 

S, Tanskanen J, Chailyan A, Sampath D, Heavens D, Clissold L, Cao S, Chapman B, Dai F, Han Y, 24 

Li H, Li X, Lin C, McCooke JK, Tan C, Wang P, Wang S, Yin S, Zhou G, Poland JA, Bellgard MI, 25 

Borisjuk L, Houben A, Doležel J, Ayling S, Lonardi S, Kersey P, Langridge P, Muehlbauer GJ, Clark 26 

MD, Caccamo M, Schulman AH, Mayer KFX, Platzer M, Close TJ, Scholz U, Hansson M, Zhang G, 27 

Braumann I, Spannagl M, Li C, Waugh R, Stein N (2017) A chromosome conformation capture 28 

ordered sequence of the barley genome. Nature 544:427-443 29 

Maucher H, Hause B, Feussner I, Ziegler J, Wasternack C (2000) Allene oxide synthases of barley (Hordeum 30 

vulgare cv. Salome): tissue specific regulation in seedling development. Plant J 21:199-213 31 

Mayer KFX, Martis M, Hedley PE, Šimková H, Liu H, Morris JA, Steuernagel B, Taudien S, Roessner S, 32 

Gundlach H, Kubaláková M, Suchánková P, Murat F, Felder M, Nussbaumer T, Graner A, Salse J, 33 

Endo T, Sakai H, Tanaka T, Itoh T, Sato K, Platzer M, Matsumoto T, Scholz U, Doležel J, Waugh R, 34 

Stein N (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 35 

23:1249-1263 36 

Mckenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel 37 

S, Daly M, Depristo MA (2010) The Genome Analysis Toolkit: A MapReduce framework for 38 

analyzing next-generation DNA sequencing data. Genome Res 20:1297-1303 39 



 21  
 

Milne I, Bayer M, Cardle L, Shaw P, Stephen G, Wright F, Marshall D (2010a) Tablet - next generation 1 

sequence assembly visualization. Bioinformatics 26:401-402  2 

Milne I, Shaw P, Marshall D (2010b) Flapjack - graphical genotype visualization. Bioinformatics 26:3133-3 

3134 4 

Milne I, Stephen G, Bayer M, Cock PJA, Pritchard L, Cardle L, Shaw PD, Marshall D (2013) Using Tablet 5 

for visual exploration of second-generation sequencing data. Briefings in Bioinformatics 14:193-202 6 

Molendijk AJ, Ruperti B, Singh MK, Dovzhenko A, Ditengou FA, Milia M, Westphal L, Rosahl S, Soellick 7 

T-R, Uhrig J, Weingarten L, Huber M, Palme K (2008) A cysteine-rich receptor-like kinase NCRK 8 

and a pathogeninduced protein kinase RBK1 are Rop GTPase interactors. Plant J 53: 909-923 9 

Newton AC (1989) Somatic recombination in Rhynchosporium secalis. Plant Pathol 38:71-74 10 

Newton AC, Searle J, Guy DC, Hackett CA, Cooke DEL (2001) Variability in pathotype, aggressiveness, 11 

RAPD profile, and rDNA ITS1 sequences of UK isolates of Rhynchosporium secalis. Zeitschrift fur 12 

Pflanzenkrankheiten und Pflanzenschutz-Journal of Plant Diseases and Protection 108:446-458 13 

Oxley SJP, Cooke LR, Black L, Hunter A, Mercer PC (2003) Management of Rhynchosporium in Different 14 

Barley Varieties and Cropping Systems. London, UK: Home-Grown Cereals Authority, Project 15 

Report 315. 16 

Patil V, Bjørnstad Å, Mackey J (2003) Molecular mapping of a new gene Rrs4CI 11549 for resistance to barley 17 

scald (Rhynchosporium secalis) Mol Breeding 12:169-183 18 

Phillips D, Jenkins G, Ramsay L (2015) The effect of temperature on the male and female recombination     19 

landscape of barley. New Phytol 208:241-249 20 

R Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical 21 

Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/ 22 

Ramsay L, Macaulay M, Ivanissevich SD, MacLean K, Cardle L, Fuller J, Edwards KJ, Tuvesson S, 23 

Morgante M, Massari A, Maestri E, Marmiroli N, Sjakste T, Ganal M, Powell W, Waugh R (2000) A 24 

Simple Sequence Repeat-Based Linkage Map of Barley. Genetics 156:1997-2005 25 

Ribeiro A, Golicz A, Hackett CA, Milne I, Stephen G, Marshall D, Flavell AJ, Bayer M (2015) An 26 

investigation of causes of false positive single nucleotide polymorphisms using simulated reads from 27 

a small eukaryote genome. BMC Bioinformatics 16:382-397 28 

Rohe M, Searle J, Newton AC, Knogge W (1996) Transformation of the plant pathogenic fungus, 29 

Rhynchosporium secalis. Curr Genet 29:587-590  30 

Rostoks N, Mudie S. Cardle L, Russell J, Ramsay L, Booth A, Svensson JT, Wanamaker SI, Walia H, 31 

Rodriguez EM, Hedley PE, Liu H, Morris J, Close TJ, Marshall DF, Waugh R (2005) Genome-wide 32 

SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress Mol Genet 33 

Genomics 274:515-527 34 

Russell J, Mascher M, Dawson IK, Kyriakidis S, Calixto C, Freund F, Bayer M, Milne I, Marshall-Griffiths 35 

T, Heinen S, Hofstad A, Sharma R, Himmelbach A, Knauft M, Van Zonneveld M, Brown JWS, 36 

Schmid K, Kilian B, Muehlbauer GJ, Stein N, and Waugh R (2016) Exome sequencing of 37 

geographically diverse barley landraces and wild relatives gives insights into environmental 38 

adaptation. Nat Genet 48:1024-1030. doi: 10.1038/ng.3612 39 



 22  
 

Saintenac C, Lee WS, Cambon F, Rudd JJ, King RC, Marande W, Powers SJ, Bergès H, Phillips AL, Uauy 1 

C, Hammond-Kosack KE, Langin T, Kanyuka K (2018) Wheat receptor kinase-like protein Stb6 2 

controls gene-for-gene resistance to fungal pathogen Zymoseptoria tritici. Nat Genet doi: 3 

10.1038/s41588-018-0051-x. 4 

Schweizer GF, Baumer M, Daniel G, Rugel H, Röder MS (1995) RFLP markers linked to scald 5 

(Rhynchosporium secalis) resistance gene Rh2 in barley. Theor Appl Genet 90:920-924 6 

Shipton WA, Boyd WJR and Ali SM (1974) Scald of barley. Rev Plant Pathol 53:839-861 7 

Shtaya MJY, Marcel TC, Sillero JC, Niks RE, Rubiales D (2006) Identification of QTLs for powdery mildew 8 

and scald resistance in barley. Euphytica 151:421-429 9 

Silvar C, Casas AM, Igartua E, Ponce-Molina LJ, Gracia MP, Schweizer G, Herz M, Flath K, Waugh R, 10 

Kopahnke D, Ordon F (2011) Resistance to powdery mildew in Spanish barley landraces is controlled 11 

by different sets of quantitative trait loci. Theor Appl Genet 123:1019-1028 12 

Starling TM, Roane CW, Chi KR (1971) Inheritance of reaction to Rhynchosporium secalis in winter barley 13 

cultivars. In: Proceedings of 2nd Int Barley Genetics Symposium, Pullman, WA, 513-519 14 

Stein N, Prasad M, Scholz U, Thiel T, Zhang H, Wolf M, Kota R, Varshney RK, Perovic D, Grosse I, Graner 15 

A (2007) A 1,000-loci transcript map of the barley genome: new anchoring points for integrative grass 16 

genomics. Theor Appl Genet 114:823-839  17 

Stotz H, Mitrousia G, de Wit P, Fitt BDL (2014) Effector-triggered defence against apoplastic fungal 18 

pathogens. Trends Plant Sci 19:491-500. doi: 10.1016/j.tplants.2014.04.009 19 

Thiel T, Kota R, Grosse I, Stein N, Graner A (2004) SNP2CAPS: a SNP and INDEL analysis tool for CAPS 20 

marker development, Nucleic Acids Res 32:e5 21 

Thirugnanasambandam A, Wright KM, Atkins SD, Whisson SC, Newton AC (2011) Infection of Rrs1 barley 22 

by an incompatible race of the fungus Rhynchosporium secalis expressing the green fluorescent 23 

protein. Plant Pathol 60:513-521 24 

Van Der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, Jordan T, Shakir 25 

K, Roazen D, Thibault J, Banks E, Garimella KV, Altshuler D, Gabriel S, Depristo MA (2013) From 26 

FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. 27 

Current protocols in Bioinformatics 43:11-33 28 

Varshney RK, Mahendar T, Aggarwal RK, Börner A. (2007) Genic Molecular Markers in Plants: 29 

Development and Applications. In: Varshney R.K., Tuberosa R. (eds) Genomics-Assisted Crop 30 

Improvement. Springer, Dordrecht 31 

Vinatzer BA, Patocchi A, Gianfranceschi L, Tartarini S, Zhang HB, Gessler C, Sansavini S (2001) Apple 32 

contains receptor-like genes homologous to the Cladosporium fulvum resistance gene family of 33 

tomato with a cluster of genes cosegregating with Vf apple scab resistance. Mol Plant Microbe Interact 34 

14:508-515 35 

VSN International (2014) GenStat for Windows 17th edn. VSN International, Hemel Hempstead, UK  36 

Wagner C, Schweizer G, Krämer M, Dehmer-Badani AG, Ordon F, Friedt W (2008) The complex 37 

quantitative barley-Rhynchosporium secalis interaction: newly identified QTL may represent already 38 

known resistance genes. Theor Appl Genet 118:113-122 39 



 23  
 

Wang Y, Gupta S, Wallwork H, Zhang X-Q, Zhou G, Broughton S, Loughman R, Lance R, Wu D, Shu  X, 1 

Li C (2014) Combination of seedling and adult plant resistance to leaf scald for stable resistance in 2 

barley. Mol Breed 34:2081-2089  3 

Xi K, Burnett PA, Tewari JP, Chen MH, Turkington TK, Helm JH (2000) Histopathological study of barley 4 

cultivars resistant and susceptible to Rhynchosporium secalis. Phytopathol 90:94-102 5 

Xu M, Korban SS (2002) A cluster of four receptor-like genes resides in the Vf locus that confers resistance 6 

to apple scab disease. Genetics 162:1995-2006 7 

Zhan J, Fitt BDL, Pinnschmidt HO, Oxley SJP, Newton AC (2008) Resistance, epidemiology and sustainable 8 

management of Rhynchosporium secalis populations on barley. Plant Pathol 57:1-14 9 

 10 



 24  
 

Table 1. Disease reactions of 8 barley cultivars and landraces against 9 Rhynchosporium commune isolates 1 

Barley 

lines 

R. commune isolates  

R-gene(s) 

according to 

literature 

Disease scores on a 1-4 scale following spray inoculation Mean lesion 

size, mm 

271 UK7 R214 Rhy174 S147-1 LfL07 SGü4/3 Rhy17 L73a 

Steptoe 0.9 (0.1)a 0.0 (0.0) 0.1 (0.2) 0.3 (0.1) 0.6 (0.4) 1.3 (1.2) 2.0 (0.4) 4.0 (0.0) 10.1 (1.1) ? 

CIho 3515 0.1 (0.1) 0.3 (0.0) 0.0 (0.0) 0.3 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 8.0 (1.2) 

Rrs1Rh4 + Rrs13 

(Hofmann et al. 

2013)  

SBCC145 0.0 (0.0) 0.3 (0.0) 

0.0 (0.0) 0.2 (0.1) 0.0 (0.0) 0.1 (0.1) 0.0 (0.0) 0.0 (0.0)  Rrs1Rh4 

(Hofmann et al. 

2013) 

Atlas 

1.0 (0.0) 1.2 (0.3) 3.3 (1.3) 4.0 (0.0) 3.8 (0.3) 4.0 (0.0) 4.0 (0.0) 4.0 (0.0)  Rrs2 

(Hanemann et 
al. 2009) 

Morex 2.8 (0.5) 3.8 (0.3) 1.3 (0.0) 4.0 (0.0) 2.8 (0.4) 4.0 (0.0) 4.0 (0.0) 4.0 (0.0) 14.8 (1.1) susceptible 

Alexis 4.0 (0.0) 4.0 (0.0) 3.3 (1.3) 4.0 (0.0) 3.3 (0.6) 4.0 (0.0) 4.0 (0.0) 4.0 (0.0) 14.2 (0.9) susceptible 

Beatrix 4.0 (0.0) 4.0 (0.0) 4.0 (0.0) 3.8 (0.3) 4.0 (0.0) 4.0 (0.0) 4.0 (0.0) 4.0 (0.0)  susceptible 

Steffi 4.0 (0.0) 2.9 (1.3) 3.1 (1.1) 4.0 (0.0) 4.0 (0.0) 4.0 (0.0) 4.0 (0.0) 4.0 (0.0)  susceptible 
 2 

a Standard error 3 

 4 

 5 

 6 

 7 

 8 

 9 
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Table 2. QTL for rhynchosporium resistance identified using Steptoe x Morex and CIho 3515 x Alexis DH populations and Rhynchosporium commune 1 
isolates 271, UK7, LfL07, S147-1and Rhy174 2 

Population R. 

commune 

isolate 

QTL 

Chromo

some 

QTL 

name 

QTL Flanking markers QTL interval, 

cM 

QTL interval, 

Mb 

Resistant 

parent 

allele 

-log10(p) R2, 
% 

Additive 

effect 

Steptoe x 

Morex 

271 3H 

6H 

6H 

7H 

qS271_3 

qS271_6a 

qS271_6b 

qS271_7 

2_0023, 1_0253 

2_0232, 1_0023 

1_0129, 1_1475 

2_1448, 1_0885 

93.2 - 111.4  

0 – 24.4 

51.6 - 67.3 

81.7 - 118.2 

591.89 – 617.76 

1.57 – 16.13 

30.80 – 463.86 

576.34 – 638.91 

Morex 

Steptoe 

Morex 

Steptoe 

7.1 

16.3 

5.9 

4.3 

12.6  

30.1 

9.6 

7.4 

0.19 

0.30 

0.17 

0.15 

UK7 3H 

5H 

6H 

qSUK7_3 

qSUK7_5 

qSUK7_6 

1_1342, 2_1129 

1_1135, 2_0265 

2_0262, 1_1479 

61.9 - 66.6  

113.0 - 135.7 

9.4 - 16.6 

201.16 – 508.77 

456.06 – 525.97 

7.89 – 12.01 

Steptoe 

Steptoe 

Steptoe 

24.5 

7.2 

34.8 

30.4 

6.9 

41.0 

0.65 

0.31 

0.75 

CIho 3515 

x Alexis 

LfL07  3H 

6H 

qC07_3 

qC07_6 

GBM1094, STSagtc17 

U35_24165, GBS0346 

35.7 - 45.2 

6.3 - 18.9 

457.98 – 542.28 

10.01 – 14.33 
CIho 3515 

CIho 3515 

90.6 

11.8 

63.7 

6.3 

1.07 

0.34 

S147-1 3H 

6H 

qC147_3 

qC147_6 

GBM1094, Bmag0112 

U35_24165, GBS0346 

35.7 – 50.0 

6.3 - 18.9 

457.98 – 542.28 

10.01 – 14.33 

CIho 3515 

CIho 3515 

74.5 

15.6 

59.5 

11.7 

1.07 

0.48 

Rhy174 

 

3H 

6H 

qC174_3 

qC174_6 

GBM1094, GMS0116 

U35_24165, U35_40281 

35.7 - 57.7 

6.3 -  17.2 

457.98 – 557.36 

10.01 – 12.05 

CIho 3515 

CIho 3515 

6.0 

97.1 

3.9 

68.9 

0.27 

1.14 

 3 

R2 is the percentage of phenotypic variance explained by the QTL 4 

 5 

Table 3. Comparison of REML predicted means for Rrs18 genotypes  6 

Differences between average greatest lesion size, mm 

 Steptoe Morex 

Morex 2.6** - 

Heterozygous 0.5 2.0* 

 7 

*Significant at P < 0.05 8 

**Significant at P < 0.01 9 
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Table 4. Genes annotated within Rrs18 interval in Morex genome assembly v4 1 

Gene ID 

Start 

position, bp 

End 

position, bp Putative function 

Gene 

annotation 

confidence 

HORVU6Hr1G005080* 10,921,339 10,925,628 

Elongation factor P-like protein, putative 

isoform 2 

high 

HORVU6Hr1G005100 10,927,482 10,931,218 

Ubiquitin carboxyl-terminal hydrolase family 

protein 

high 

HORVU6Hr1G005110 11,067,497 11,069,706 Transposon Ty1-OL Gag-Pol polyprotein low 

HORVU6Hr1G005120 11,263,448 11,264,902 F-box domain containing protein high 

HORVU6Hr1G005130 11,277,874 11,278,486 undescribed protein low 

HORVU6Hr1G005140 11,280,514 11,281,715 undescribed protein high 

HORVU6Hr1G005150 11,288,602 11,298,978 two-component response regulator ARR11 high 

HORVU6Hr1G005170 11,314,367 11,326,412 two-component response regulator ARR11 
high 

HORVU6Hr1G005190 11,391,525 11,392,142 Transposon protein, putative, Mutator sub-class low 

HORVU6Hr1G005200 11,400,174 11,400,372 undescribed secreted protein low 

HORVU6Hr1G005210 11,441,330 11,442,077 undescribed protein low 

HORVU6Hr1G005220 11,475,836 11,480,126 60 kDa chaperonin 2 high 

HORVU6Hr1G005230 11,493,928 11,495,397 Membrane fusion protein Use1 high 

HORVU6Hr1G005240* 11,509,347 11,515,094 Pentatricopeptide repeat-containing protein high 

HORVU6Hr1G005250* 11,516,051 11,518,503 Allene oxide synthase high 

HORVU6Hr1G005260* 11,567,133 11,574,185 Protein kinase superfamily protein high 

HORVU6Hr1G005280 11,574,189 11,574,510 undescribed protein low 

* Transcribed in CIho 3515 and Alexis leaves 2 

Table 5. Genotypes for lines CIho3515, Steptoe, Morex and Alexis within Rrs18 interval based on Flapjack 3 
genotype visualization software (Milne et al. 2010b). Lines were sorted by similarity to Alexis with Alexis 4 
allele highlighted in grey. 5 

Gene ID 
SNP 

Barley line 
SNP effect 

Morex Alexis CIho3515 Steptoe 

HORVU6Hr1G005080 chr6H_10922107 G A G G P/S 

chr6H_10924478 C C T T Synonymous 

HORVU6Hr1G005240 chr6H_11509890 C T C C Syn 

chr6H_11509979 T T C T V/A 

chr6H_11510387 C C C/T C P/L 

HORVU6Hr1G005250 chr6H_11516570 A A G G 3'UTR 

chr6H_11517174 G T G G Synonymous 

chr6H_11517367 G A G G Synonymous 

chr6H_11517718 C C A C Synonymous 

chr6H_11517940 G G A A Synonymous 

chr6H_11518293 G G C C L/V 

chr6H_11518315 T T C C 5'UTR 

HORVU6Hr1G005260 chr6H_11571800 A A G G T/A 

chr6H_11572699 T C T T Synonymous 

chr6H_11572843 A C A C Intron 

chr6H_11572964 T C T T Synonymous 

chr6H_11573501 G A G A Synonymous 

chr6H_11573820 A G A A S/G 

chr6H_11574036 A A C A 3'UTR 

6 
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Figure legends 1 

Fig. 1 Response of 140 Steptoe x Morex DH lines to Rhynchosporium commune isolates a 271 and b UK7. 2 

The Jackson and Webster (1976) scale extended by half steps was used. Vertical arrows indicate disease 3 

scores of parental cultivars Steptoe and Morex, and mean disease scores. A single environment QTL scan for 4 

disease severity using R. commune isolates c 271 and d UK7 on Steptoe x Morex DH population. The 5 

horizontal dashed line represents the significance threshold corresponding to a genome-wide error rate of 6 

0.05. 7 

Fig. 2 Response of 238, 239 and 238 CIho 3515 x Alexis DH lines to Rhynchosporium commune isolates a 8 

LfL07, b S147-1and c Rhy174 respectively. The Jackson and Webster (1976) scale extended by half steps 9 

was used. Vertical arrows indicate disease scores of parents CIho 3515 and Alexis, and mean disease scores. 10 

d QTL on chromosomes 3H and 6H of CIho 3515 x Alexis DH population for R. commune isolates LfL07, 11 

S147-1 and Rhy174. The horizontal dashed line represents the significance threshold corresponding to an 12 

overall error rate of 0.05. 13 

Fig. 3 Positions of marker sequences on 6HS pseudomolecule of Morex genome assembly v4. The diagram 14 

shows the first 30 Mb of the Morex 6HS pseudomolecule. Brackets show the flanking markers for QTL 15 

identified for resistance to rhynchosporium, and the parental lines used in QTL mapping. The physical 16 

position of Rrs13 was identified using flanking markers Cxp3 and MWG916 from BC line 30 x Clipper 17 

population (Genger et al. 2003) and flanking markers BMag500 and MWG916 from AB30 x Clipper BC3F2 18 

population (Cheong et al. 2006). The resistance QTL identified in Steptoe x Morex and CIho 3515 x Alexis 19 

DH populations at roughly the same position distal to Rrs13 have been assigned as the Rrs18 locus.  20 

Fig. 4 Fine mapping of rhynchosporium severity on selected Steptoe x Morex BC1S2 lines using 21 

Rhynchosporium commune isolates a 271, b L73a. Further fine mapping was carried out with additional 22 

Steptoe x Morex BC1S2 lines using R. commune isolate L73a (c). The horizontal dashed line shows the 23 

Logarithm of the odds (LOD) corresponding to an overall error rate of 0.05.  24 

Fig. 5 Partial genetic map of chromosome 6H, linked to physical map, depicting the markers used for fine 25 

mapping of Rrs18 in Steptoe x Morex BC1 population, and gene content within Rrs18 interval based on the 26 

latest Morex genome annotation (Mascher et al. 2017) (not drawn to scale). Black rectangles represent genes 27 

transcribed in leaves of CIho3515 and Alexis, dark and light grey rectangles represent remaining high and 28 

low confidence genes respectively. 29 

 30 

Supplementary Tables 31 

Table S1 Genotypes and mean disease scores of Steptoe x Morex DH lines screened with Rhynchosporium 32 
commune isolates 271 and UK7 33 

Table S2 Genotypes and mean disease scores of CIho 3515 x Alexis DH lines screened with 34 
Rhynchosporium commune isolates LfL07, S147-1 and Rhy174 35 

 36 

 37 

 38 
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Table S3 Markers used for Steptoe x Morex DH population mapping with genetic map positions 1 

Table S4 Markers used for CIho 3515 x Alexis DH population mapping with genetic map positions 2 

Table S5 OPA markers used for selecting Steptoe x Morex BC1 S1 lines for mapping 3 

Table S6 KASP markers with primer sequences 4 

Table S7 BeadXpress OPA markers used for genotyping Steptoe x Morex BC1S2 lines for mapping 5 

Table S8 Genotypes and phenotypes of Steptoe x Morex BC1S2 lines used in fine mapping 6 

Table S9 Steptoe x Morex BC1S2 lines genotypes and average greatest lesion size following inoculation with 7 
Rhynchosporium commune isolate L73a, used in the final fine mapping experiment 8 
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shows the first 30 Mb of the Morex 6HS pseudomolecule. Brackets show the flanking markers for QTL 

identified for resistance to rhynchosporium, and the parental lines used in QTL mapping. The physical 
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latest Morex genome annotation (Mascher et al. 2017) (not drawn to scale). Black rectangles represent 3 
genes transcribed in leaves of CIho3515 and Alexis, dark and light grey rectangles represent remaining 4 
high and low confidence genes respectively. 5 


	Rrs18_paper_revised changes accepted.pdf (p.1-28)
	Fig.1.pdf (p.29)
	Fig.2.pdf (p.30)
	Fig.3-revised.pdf (p.31)
	Fig.4.pdf (p.32)
	Fig.5.pdf (p.33)

