16 research outputs found

    Gemtuzumab-Ozogamicin-Related Impaired Hemoglobin-Haptoglobin Scavenging as On-Target/Off-Tumor Toxicity of Anti-CD33 AML Therapy : A Report of Two Cases

    Get PDF
    Gemtuzumab-ozogamicin (GO) is a humanized anti-CD33 antibody, which is conjugated to a cytotoxic calicheamicin. It is used to treat acute myeloid leukemia (AML) in combination with chemotherapy. We describe here two GO-treated acute myeloid leukemia (AML) cases: both patients suffered from a toxic syndrome, which manifested as impaired hemoglobin-haptoglobin scavenging and accumulation of hemolysis-related products. Our observations and earlier reports indicated that the reaction was caused by GO-targeted destruction of CD33 + CD163+ monocytes/macrophages, which are responsible for the clearance of hemoglobin-haptoglobin complexes. The rise of plasma lactate dehydrogenase was an early sign of the reaction, and both patients had high levels of free plasma hemoglobin, but plasma haptoglobin and bilirubin levels were paradoxically normal. Symptoms included septic fever and abnormalities in cardiac tests and in the case of the first patient, severe neurological symptoms which required intensive care unit admittance. Therapeutic plasma exchanges supported the patients until the recovery of normal hematopoiesis. The symptoms may be easily confounded with infectious complications-related organ damage. Regarding the increasing use of gemtuzumab-ozogamicin and other emerging CD33-targeted cell therapies, we want to highlight this mostly unknown and probably underdiagnosed toxicity.Peer reviewe

    Volume Assessment in Mechanically Ventilated Critical Care Patients Using Bioimpedance Vectorial Analysis, Brain Natriuretic Peptide, and Central Venous Pressure

    Get PDF
    Purpose. Strategies for volume assessment of critically ill patients are limited, yet early goal-directed therapy improves outcomes. Central venous pressure (CVP), Bioimpedance Vectorial Analysis (BIVA), and brain natriuretic peptide (BNP) are potentially useful tools. We studied the utility of these measures, alone and in combination, to predict changing oxygenation. Methods. Thirty-four mechanically ventilated patients, 26 of whom had data beyond the first study day, were studied. Relationships were assessed between CVP, BIVA, BNP, and oxygenation index (O2I) in a cross-sectional (baseline) and longitudinal fashion using both univariate and multivariable modeling. Results. At baseline, CVP and O2I were positively correlated (R = 0.39; P = .021), while CVP and BIVA were weakly correlated (R = −0.38; P = .025). The association between slopes of variables over time was negligible, with the exception of BNP, whose slope was correlated with O2I (R = 0.40; P = .044). Comparing tertiles of CVP, BIVA, and BNP slopes with the slope of O2I revealed only modest agreement between BNP and O2I (kappa = 0.25; P = .067). In a regression model, only BNP was significantly associated with O2I; however, this was strengthened by including CVP in the model. Conclusions. BNP seems to be a valuable noninvasive measure of volume status in critical care and should be assessed in a prospective manner

    B-Type Natriuretic Peptide in the Critically Ill with Acute Kidney Injury

    Get PDF
    Introduction. Acute kidney injury (AKI) is common in the intensive care unit (ICU) and associated with poor outcome. Plasma B-type natriuretic peptide (BNP) is a biomarker related to myocardial overload, and is elevated in some ICU patients. There is a high prevalence of both cardiac and renal dysfunction in ICU patients. Aims. To investigate whether plasma BNP levels in the first 48 hours were associated with AKI in ICU patients. Methods. We studied a cohort of 34 consecutive ICU patients. Primary outcome was presence of AKI on presentation, or during ICU stay. Results. For patients with AKI on presentation, BNP was statistically higher at 24 and 48 hours than No-AKI patients (865 versus 148 pg/mL; 1380 versus 131 pg/mL). For patients developing AKI during 48 hours, BNP was statistically higher at 0, 24 and 48 hours than No-AKI patients (510 versus 197 pg/mL; 552 versus 124 pg/mL; 949 versus 104 pg/mL). Conclusion. Critically ill patients with AKI on presentation or during ICU stay have higher levels of the cardiac biomarker BNP relative to No-AKI patients. Elevated levels of plasma BNP may help identify patients with elevated risk of AKI in the ICU setting. The mechanism for this cardiorenal connection requires further investigation

    Access to

    Get PDF
    Introduction. Acute kidney injury (AKI) is common in the intensive care unit (ICU) and associated with poor outcome. Plasma B-type natriuretic peptide (BNP) is a biomarker related to myocardial overload, and is elevated in some ICU patients. There is a high prevalence of both cardiac and renal dysfunction in ICU patients. Aims. To investigate whether plasma BNP levels in the first 48 hours were associated with AKI in ICU patients. Methods. We studied a cohort of 34 consecutive ICU patients. Primary outcome was presence of AKI on presentation, or during ICU stay. Results. For patients with AKI on presentation, BNP was statistically higher at 24 and 48 hours than No-AKI patients (865 versus 148 pg/mL; 1380 versus 131 pg/mL). For patients developing AKI during 48 hours, BNP was statistically higher at 0, 24 and 48 hours than No-AKI patients (510 versus 197 pg/mL; 552 versus 124 pg/mL; 949 versus 104 pg/mL). Conclusion. Critically ill patients with AKI on presentation or during ICU stay have higher levels of the cardiac biomarker BNP relative to No-AKI patients. Elevated levels of plasma BNP may help identify patients with elevated risk of AKI in the ICU setting. The mechanism for this cardiorenal connection requires further investigation

    Common Inflammation-Related Candidate Gene Variants and Acute Kidney Injury in 2647 Critically Ill Finnish Patients

    Get PDF
    Acute kidney injury (AKI) is a syndrome with high incidence among the critically ill. Because the clinical variables and currently used biomarkers have failed to predict the individual susceptibility to AKI, candidate gene variants for the trait have been studied. Studies about genetic predisposition to AKI have been mainly underpowered and of moderate quality. We report the association study of 27 genetic variants in a cohort of Finnish critically ill patients, focusing on the replication of associations detected with variants in genes related to inflammation, cell survival, or circulation. In this prospective, observational Finnish Acute Kidney Injury (FINNAKI) study, 2647 patients without chronic kidney disease were genotyped. We defined AKI according to Kidney Disease: Improving Global Outcomes (KDIGO) criteria. We compared severe AKI (Stages 2 and 3, n = 625) to controls (Stage 0, n = 1582). For genotyping we used iPLEX(TM) Assay (Agena Bioscience). We performed the association analyses with PLINK software, using an additive genetic model in logistic regression. Despite the numerous, although contradictory, studies about association between polymorphisms rs1800629 in TNFA and rs1800896 in IL10 and AKI, we found no association (odds ratios 1.06 (95% CI 0.89-1.28, p = 0.51) and 0.92 (95% CI 0.80-1.05, p = 0.20), respectively). Adjusting for confounders did not change the results. To conclude, we could not confirm the associations reported in previous studies in a cohort of critically ill patients.Peer reviewe

    Cardio-renal syndromes: report from the consensus conference of the Acute Dialysis Quality Initiative

    Get PDF
    A consensus conference on cardio-renal syndromes (CRS) was held in Venice Italy, in September 2008 under the auspices of the Acute Dialysis Quality Initiative (ADQI). The following topics were matter of discussion after a systematic literature review and the appraisal of the best available evidence: definition/classification system; epidemiology; diagnostic criteria and biomarkers; prevention/protection strategies; management and therapy. The umbrella term CRS was used to identify a disorder of the heart and kidneys whereby acute or chronic dysfunction in one organ may induce acute or chronic dysfunction in the other organ. Different syndromes were identified and classified into five subtypes. Acute CRS (type 1): acute worsening of heart function (AHF–ACS) leading to kidney injury and/or dysfunction. Chronic cardio-renal syndrome (type 2): chronic abnormalities in heart function (CHF-CHD) leading to kidney injury and/or dysfunction. Acute reno-cardiac syndrome (type 3): acute worsening of kidney function (AKI) leading to heart injury and/or dysfunction. Chronic reno-cardiac syndrome (type 4): chronic kidney disease leading to heart injury, disease, and/or dysfunction. Secondary CRS (type 5): systemic conditions leading to simultaneous injury and/or dysfunction of heart and kidney. Consensus statements concerning epidemiology, diagnosis, prevention, and management strategies are discussed in the paper for each of the syndromes

    Heme oxygenase-1 repeat polymorphism in septic acute kidney injury

    Get PDF
    Acute kidney injury (AKI) is a syndrome that frequently affects the critically ill. Recently, an increased number of dinucleotide repeats in the HMOX1 gene were reported to associate with development of AKI in cardiac surgery. We aimed to test the replicability of this finding in a Finnish cohort of critically ill septic patients. This multicenter study was part of the national FINNAKI study. We genotyped 300 patients with severe AKI (KDIGO 2 or 3) and 353 controls without AKI (KDIGO 0) for the guanine-thymine (GTn) repeat in the promoter region of the HMOX1 gene. The allele calling was based on the number of repeats, the cut off being 27 repeats in the S-L (short to long) classification, and 27 and 34 repeats for the S-M-L2 (short to medium to very long) classification. The plasma concentrations of heme oxygenase-1 (HO-1) enzyme were measured on admission. The allele distribution in our patients was similar to that published previously, with peaks at 23 and 30 repeats. The S-allele increases AKI risk. An adjusted OR was 1.30 for each S-allele in an additive genetic model (95% CI 1.01-1.66; p = 0.041). Alleles with a repeat number greater than 34 were significantly associated with lower HO-1 concentration (p<0.001). In septic patients, we report an association between a short repeat in HMOX1 and AKI risk
    corecore