16 research outputs found

    A Genome-Wide Association Study of Diabetic Kidney Disease in Subjects With Type 2 Diabetes

    Get PDF
    dentification of sequence variants robustly associated with predisposition to diabetic kidney disease (DKD) has the potential to provide insights into the pathophysiological mechanisms responsible. We conducted a genome-wide association study (GWAS) of DKD in type 2 diabetes (T2D) using eight complementary dichotomous and quantitative DKD phenotypes: the principal dichotomous analysis involved 5,717 T2D subjects, 3,345 with DKD. Promising association signals were evaluated in up to 26,827 subjects with T2D (12,710 with DKD). A combined T1D+T2D GWAS was performed using complementary data available for subjects with T1D, which, with replication samples, involved up to 40,340 subjects with diabetes (18,582 with DKD). Analysis of specific DKD phenotypes identified a novel signal near GABRR1 (rs9942471, P = 4.5 x 10(-8)) associated with microalbuminuria in European T2D case subjects. However, no replication of this signal was observed in Asian subjects with T2D or in the equivalent T1D analysis. There was only limited support, in this substantially enlarged analysis, for association at previously reported DKD signals, except for those at UMOD and PRKAG2, both associated with estimated glomerular filtration rate. We conclude that, despite challenges in addressing phenotypic heterogeneity, access to increased sample sizes will continue to provide more robust inference regarding risk variant discovery for DKD.Peer reviewe

    The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape: A Large-Scale Genome-Wide Interaction Study

    Get PDF
    Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age-and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of European descent) with genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric Traits (GIANT) Consortium. Each study tested the association of up to similar to 2.8M SNPs with BMI and WHRadjBMI in four strata (men &lt;= 50y, men &gt; 50y, women &lt;= 50y, women &gt; 50y) and summary statistics were combined in stratum-specific meta-analyses. We then screened for variants that showed age-specific effects (G x AGE), sex-specific effects (G x SEX) or age-specific effects that differed between men and women (G x AGE x SEX). For BMI, we identified 15 loci (11 previously established for main effects, four novel) that showed significant (FDR&lt; 5%) age-specific effects, of which 11 had larger effects in younger (&lt; 50y) than in older adults (&gt;= 50y). No sex-dependent effects were identified for BMI. For WHRadjBMI, we identified 44 loci (27 previously established for main effects, 17 novel) with sex-specific effects, of which 28 showed larger effects in women than in men, five showed larger effects in men than in women, and 11 showed opposite effects between sexes. No age-dependent effects were identified for WHRadjBMI. This is the first genome-wide interaction meta-analysis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we confirm the sex-specificity of genetic effects on WHRadjBMI. These results may providefurther insights into the biology that underlies weight change with age or the sexually dimorphism of body shape.</p

    Mining the human phenome using allelic scores that index biological intermediates

    Get PDF
    J. Kaprio ja M-L. Lokki työryhmien jäseniä.It is common practice in genome-wide association studies (GWAS) to focus on the relationship between disease risk and genetic variants one marker at a time. When relevant genes are identified it is often possible to implicate biological intermediates and pathways likely to be involved in disease aetiology. However, single genetic variants typically explain small amounts of disease risk. Our idea is to construct allelic scores that explain greater proportions of the variance in biological intermediates, and subsequently use these scores to data mine GWAS. To investigate the approach's properties, we indexed three biological intermediates where the results of large GWAS meta-analyses were available: body mass index, C-reactive protein and low density lipoprotein levels. We generated allelic scores in the Avon Longitudinal Study of Parents and Children, and in publicly available data from the first Wellcome Trust Case Control Consortium. We compared the explanatory ability of allelic scores in terms of their capacity to proxy for the intermediate of interest, and the extent to which they associated with disease. We found that allelic scores derived from known variants and allelic scores derived from hundreds of thousands of genetic markers explained significant portions of the variance in biological intermediates of interest, and many of these scores showed expected correlations with disease. Genome-wide allelic scores however tended to lack specificity suggesting that they should be used with caution and perhaps only to proxy biological intermediates for which there are no known individual variants. Power calculations confirm the feasibility of extending our strategy to the analysis of tens of thousands of molecular phenotypes in large genome-wide meta-analyses. We conclude that our method represents a simple way in which potentially tens of thousands of molecular phenotypes could be screened for causal relationships with disease without having to expensively measure these variables in individual disease collections.Peer reviewe

    The C-terminus of apoptin represents a unique tumor cell-enhanced nuclear targeting module

    No full text
    Chicken anemia virus viral protein 3 (VP3 or apoptin) localizes more efficiently in the nucleus of transformed than nontransformed cells. Although previous studies implicate the C-terminus of apoptin as being responsible, the molecular basis is controversial, and the extent to which altered nuclear transport efficiency in tumor cells may influence VP3 differential targeting unclear. Here we establish that the C-terminus of VP3 (residues 74-121), out of the context of the full-length protein, is indeed sufficient for tumor cell-enhanced nuclear targeting through phosphoinhibition of VP3 (74-121)-mediated nuclear export occurring exclusively in tumor cells. Importantly, we show that VP3 (74-121) is unique in showing tumor cell-enhanced nuclear targeting in that other NLS-containing proteins fail to show differential localization in human osteosarcoma cells compared to their normal isogenic counterparts. Thus, the C-terminus of VP3 represents a unique tumor cell-enhanced nuclear targeting module with potential application in tumor cell-specific drug delivery

    The tumor cell specific nuclear targeting signal of Apoptin

    No full text
    Chicken Anemia Virus viral protein 3 (VP3 or apoptin)\u2019s ability to localize preferentially to the nucleus of tumor but not normal cells is tightly linked to its ability to be exclusively phosphorylated in tumor but not normal cells at residue T108. The link between apoptin\u2019s phosphorylation state and subcellular localization was recently established with the demonstration that the apoptin C-terminal domain contains a nuclear export sequence (NES), which is inactivated upon phosphorylation in tumor cells. In this review we describe the molecular mechanisms responsible for apoptin's tumor specific nuclear targeting as mediated by its C-terminally located tumor specific nuclear targeting signal (tNTS), formed by a bipartite-like NLS and a phosphorylation-regulated NES, which is sufficient to target heterologous proteins specifically to the nucleus of tumor cells. The potential applications of VP3\u2019s tumor cell-specific nuclear targeting signal in enhancing tumor specificity of non-viral gene therapy approaches are also discussed

    Interaction of Rabies Virus P-Protein With STAT Proteins is Critical to Lethal Rabies Disease

    Get PDF
    BACKGROUND: Rabies virus (RABV) causes rabies disease resulting in >55,000 human deaths/year. The multifunctional RABV P-protein has essential roles in genome replication, and forms interactions with cellular STAT proteins that are thought to underlie viral antagonism of interferon-dependent immunity. However, the molecular details of P-protein-STAT interaction, and its importance to disease are unresolved. METHODS: Studies were performed using sequence/structure analysis, mutagenesis, immunoprecipitation, luciferase and qRT-PCR-based signaling assays, confocal microscopy and reverse genetics/in vivo infection. RESULTS: We identified a hydrophobic pocket of the P-protein C-terminal domain as critical to STAT-binding/antagonism. This interface was found to be functionally and spatially independent of the region responsible for N-protein interaction, which is critical to genome replication. Based on these findings, we generated the first mutant RABV lacking STAT-association. Growth of the virus in vitro was unimpaired, but it lacked STAT-antagonist function and was highly sensitive to interferon. Importantly, growth of the virus was strongly attenuated in brains of infected mice, producing no major neurological symptoms, compared with the invariably lethal wild-type virus. CONCLUSIONS: These data represent direct evidence that P-protein-STAT interaction is critical to rabies, and provide novel insights into the mechanism by which RABV coordinates distinct functions in interferon antagonism and replication
    corecore