35 research outputs found

    Dynamic in vitro measurement of patellar movement after total knee arthroplasty: an in vitro study

    Get PDF
    BACKGROUND: Changing the kinematic behaviour of patellar movement could be one of the reasons for anterior knee pain after implantation of a total knee arthroplasty (TKA). The aim of the current study was to measure the potential influence on patellar kinematics of patellar resurfacing during TKA. METHODS: Patellar movement before and after TKA with and without patellar resurfacing was measured under dynamic conditions in an in vitro cadaver simulation. Physiologic Musculus quadriceps forces were applied to five physiologic human knee specimens undergoing simulated isokinetic extension motions, patellar movement was measured using an ultrasonic measurement system. Thereafter, the Interax(® )I.S.A.-prosthesis system was implanted without and with resurfacing the patella, and patellar movement was again measured. RESULTS: The physiologic patella center moved on a semilunar path up to 6.4 mm (SD 6.4 mm) medially during extension. After TKA, the unresurfaced patella showed significantly less medial translation (p = 0.04) than the resurfaced patella. Subsequent resurfacing of the patella then resulted in a return to mediolateral positioning of the patella similar to the physiological case, whereas the resurfaced patella tilted up to twice as much as physiologic. CONCLUSION: The results of this study suggest that resurfacing of the patella during TKA can result in a restoration of the physiologic mediolateral shift of the patellofemoral joint while angulation of the patella remains unphysiologic

    Development of a mathematical model for predicting electrically elicited quadriceps femoris muscle forces during isovelocity knee joint motion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Direct electrical activation of skeletal muscles of patients with upper motor neuron lesions can restore functional movements, such as standing or walking. Because responses to electrical stimulation are highly nonlinear and time varying, accurate control of muscles to produce functional movements is very difficult. Accurate and predictive mathematical models can facilitate the design of stimulation patterns and control strategies that will produce the desired force and motion. In the present study, we build upon our previous isometric model to capture the effects of constant angular velocity on the forces produced during electrically elicited concentric contractions of healthy human quadriceps femoris muscle. Modelling the isovelocity condition is important because it will enable us to understand how our model behaves under the relatively simple condition of constant velocity and will enable us to better understand the interactions of muscle length, limb velocity, and stimulation pattern on the force produced by the muscle.</p> <p>Methods</p> <p>An additional term was introduced into our previous isometric model to predict the force responses during constant velocity limb motion. Ten healthy subjects were recruited for the study. Using a KinCom dynamometer, isometric and isovelocity force data were collected from the human quadriceps femoris muscle in response to a wide range of stimulation frequencies and patterns. % error, linear regression trend lines, and paired t-tests were used to test how well the model predicted the experimental forces. In addition, sensitivity analysis was performed using Fourier Amplitude Sensitivity Test to obtain a measure of the sensitivity of our model's output to changes in model parameters.</p> <p>Results</p> <p>Percentage RMS errors between modelled and experimental forces determined for each subject at each stimulation pattern and velocity showed that the errors were in general less than 20%. The coefficients of determination between the measured and predicted forces show that the model accounted for ~86% and ~85% of the variances in the measured force-time integrals and peak forces, respectively.</p> <p>Conclusion</p> <p>The range of predictive abilities of the isovelocity model in response to changes in muscle length, velocity, and stimulation frequency for each individual make it ideal for dynamic applications like FES cycling.</p

    Advances in infrared GRIN: a review of novel materials towards components and devices

    No full text
    © COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only. Novel optical materials capable of advanced functionality in the infrared will enable optical designs that can offer lightweight or small footprint solutions in both planar and bulk optical systems. UCF's Glass Processing and Characterization Laboratory (GPCL) with our collaborators have been evaluating compositional design and processing protocols for both bulk and film strategies employing multi-component chalcogenide glasses (ChGs). These materials can be processed with broad compositional flexibility that allows tailoring of their transmission window, physical and optical properties, which allows them to be engineered for compatibility with other homogeneous amorphous or crystalline optical components. This paper reviews progress in forming ChG-based GRIN materials from diverse processing methodologies, including solution-derived ChG layers, poled ChGs with gradient compositional and surface reactivity behavior, nanocomposite bulk ChGs and glass ceramics, and meta-lens structures realized through multiphoton lithography (MPL)
    corecore