9 research outputs found

    Photosynthetic Responses to Heat Treatments at Different Temperatures and following Recovery in Grapevine (Vitis amurensis L.) Leaves

    Get PDF
    BACKGROUND: The electron transport chain, Rubisco and stomatal conductance are important in photosynthesis. Little is known about their combined responses to heat treatment at different temperatures and following recovery in grapevines (Vitis spp.) which are often grown in climates with high temperatures. METHODOLOGY/FINDINGS: The electron transport function of photosystem II, the activation state of Rubisco and the influence of stomatal behavior were investigated in grapevine leaves during heat treatments and following recovery. High temperature treatments included 35, 40 and 45°C, with 25°C as the control and recovery temperature. Heat treatment at 35°C did not significantly (P>0.05) inhibit net photosynthetic rate (P(n)). However, with treatments at 40 and 45°C, P(n) was decreased, accompanied by an increase in substomatal CO(2) concentration (C(i)), decreases in stomatal conductance (g(s)) and the activation state of Rubisco, and inhibition of the donor side and the reaction center of PSII. The acceptor side of PSII was inhibited at 45°C but not at 40°C. When grape leaves recovered following heat treatment, P(n), g(s) and the activation state of Rubisco also increased, and the donor side and the reaction center of PSII recovered. The increase in P(n) during the recovery period following the second 45°C stress was slower than that following the 40°C stress, and these increases corresponded to the donor side of PSII and the activation state of Rubisco. CONCLUSIONS: Heat treatment at 35°C did not significantly (P>0.05) influence photosynthesis. The decrease of P(n) in grape leaves exposed to more severe heat stress (40 or 45°C) was mainly attributed to three factors: the activation state of Rubisco, the donor side and the reaction center of PSII. However, the increase of P(n) in grape leaves following heat stress was also associated with a stomatal response. The acceptor side of PSII in grape leaves was responsive but less sensitive to heat stress

    Nutrition in relation to organic aquaculture: Sources and strategies

    No full text
    Organic production is a system of farm management and food production that combines best environmental practices, a high level of biodiversity, the preservation of natural resources, the application of high animal welfare standards and a production method in line with the preference of certain consumers for products produced using natural substances and processes. Mie et al. (2017) reviewed existing evidence on the impact of organic food on human health and compared organic versus conventional food production with respect to parameters important to human health. The review emphasised several documented human health benefits associated with organic food production and production methods and concluded that it is likely to be beneficial within the conventional agriculture, for example, in integrated pest management and antibiotics. This chapter covers aspects of current use of formulated feeds, feed composition, aquafeed technology, sustainable alternatives to common feed ingredients, nutritional physiology and general nutritional principles and product quality in the context of the organic aquaculture. It reviews new knowledge and presents research results to update and may modify the criteria and standards for organic aquaculture in relation to nutrition and thus to provide high-quality products for the consumers. This chapter is based on the current European regulation on organic aquaculture, as well as on the proposed revision of the European regulation, which is currently being approved after a long process for getting the agreement of the European Parliament, European Council and the European Commission

    Linse

    No full text

    PSII Fluorescence Techniques for Measurement of Drought and High Temperature Stress Signal in Crop Plants: Protocols and Applications

    No full text

    The Complexity of Vesicle Transport Factors in Plants Examined by Orthology Search

    No full text
    corecore