40 research outputs found

    Distance-dependent association of affect with pacing strategy in cycling time trials.

    Get PDF
    The psychological construct of affect is proposed to significantly contribute to pacing decisions during exercise. Borg’s RPE scale, another important regulator of work rate, is criticized as an inadequate measure of the multiple perceptual responses experienced. This study aimed to examine power output distribution and associated changes in affect, self-efficacy, perceptual cues, HR, and respiratory gases during both 16.1- and 40-km self-paced cycling time trials (TT). Secondly, the differentiation between physical perceptions of exertion and sense of effort in self-paced exercise was investigated. Method: Fifteen trained male cyclists completed 16.1- and 40-km TT using a CompuTrainer cycle ergometer. Time, power output distribution, affect, self-efficacy, physical RPE (P-RPE), task effort and awareness (TEA), HR, and respiratory gases were measured throughout each TT. Linear mixed models explored associations of these variables with power output distribution and the relationship between P-RPE and TEA. Results: Similar pacing strategies were adopted in the 16.1- and 40-km TT (P = 0.31), and the main effects were found for affect (P = 0.001) and RER (P G 0.001). Interactions between affect (P = 0.037) and RER (P = 0.004), with condition, indicated closer associations with power output distribution in 16.1 km than that in 40 km TT. P-RPE was not significantly different from TEA (P = 0.053). Conclusion: A significant association between affect and power output distribution suggests that affective responses are task dependent even in self-paced exercise, and a greater association is demonstrated in higher intensity, 16.1 km TT. Furthermore, physical perceptions of exertion are not clearly differentiated from the sense of effort in self-paced exercise

    Deception has no acute or residual effect on cycling time trial performance but negatively effects perceptual responses.

    Get PDF
    Feedback deception is used to explore the importance of expectations on pacing strategy and performance in self-paced exercise. The deception of feedback from a previous performance explores the importance of experience knowledge on exercise behaviour. This study aimed to explore the acute and residual effects of the deception of previous performance speed on perceptual responses and performance in cycling time trials.A parallel-group design.Twenty cyclists were assigned to a control or deception group and performed 16.1km time trials. Following a ride-alone baseline time trial (FBL), participants performed against a virtual avatar representing their FBL performance (PACER), then completed a subsequent ride-alone time trial (SUB). The avatar in the deception group, however, was unknowingly set 2% faster than their FBL.Both groups performed faster in PACER than FBL and SUB (p<0.05), but SUB was not significantly different to FBL. Affect was more negative and Ratings of Perceived Exertion (RPE) were higher in PACER than FBL in the deception group (p<0.05).The presence of a visual pacer acutely facilitated time trial performance, but deceptive feedback had no additional effect on performance. The deception group, however, experienced more negative affect and higher RPE in PACER, whereas these responses were absent in the control group. The performance improvement was not sustained in SUB, suggesting no residual performance effects occurred

    Deception studies manipulating centrally acting performance modifiers: a review.

    Get PDF
    Athletes anticipatorily set and continuously adjust pacing strategies before and during events to produce optimal performance. Selfregulation ensures maximal effort is exerted in correspondence with the end point of exercise, while preventing physiological changes that are detrimental and disruptive to homeostatic control. The integration of feedforward and feedback information, together with the proposed brain_s performance modifiers is said to be fundamental to this anticipatory and continuous regulation of exercise. The manipulation of central, regulatory internal and external stimuli has been a key focus within deception research, attempting to influence the self-regulation of exercise and induce improvements in performance. Methods of manipulating performance modifiers such as unknown task end point, deceived duration or intensity feedback, self-belief, or previous experience create a challenge within research, as although they contextualize theoretical propositions, there are few ecological and practical approaches which integrate theory with practice. In addition, the different methods and measures demonstrated in manipulation studies have produced inconsistent results. This review examines and critically evaluates the current methods of how specific centrally controlled performance modifiers have been manipulated, within previous deception studies. From the 31 studies reviewed, 10 reported positive effects on performance, encouraging future investigations to explore the mechanisms responsible for influencing pacing and consequently how deceptive approaches can further facilitate performance. The review acts to discuss the use of expectation manipulation not only to examine which methods of deception are successful in facilitating performance but also to understand further the key components used in the regulation of exercise and performance

    Identifying and Characterizing Alternative Molecular Markers for the Symbiotic and Free-Living Dinoflagellate Genus Symbiodinium

    Get PDF
    Dinoflagellates in the genus Symbiodinium are best known as endosymbionts of corals and other invertebrate as well as protist hosts, but also exist free-living in coastal environments. Despite their importance in marine ecosystems, less than 10 loci have been used to explore phylogenetic relationships in this group, and only the multi-copy nuclear ribosomal Internal Transcribed Spacer (ITS) regions 1 and 2 have been used to characterize fine-scale genetic diversity within the nine clades (A–I) that comprise the genus. Here, we describe a three-step molecular approach focused on 1) identifying new candidate genes for phylogenetic analysis of Symbiodinium spp., 2) characterizing the phylogenetic relationship of these candidate genes from DNA samples spanning eight Symbiodinium clades (A–H), and 3) conducting in-depth phylogenetic analyses of candidate genes displaying genetic divergences equal or higher than those within the ITS-2 of Symbiodinium clade C. To this end, we used bioinformatics tools and reciprocal comparisons to identify homologous genes from 55,551 cDNA sequences representing two Symbiodinium and six additional dinoflagellate EST libraries. Of the 84 candidate genes identified, 7 Symbiodinium genes (elf2, coI, coIII, cob, calmodulin, rad24, and actin) were characterized by sequencing 23 DNA samples spanning eight Symbiodinium clades (A–H). Four genes displaying higher rates of genetic divergences than ITS-2 within clade C were selected for in-depth phylogenetic analyses, which revealed that calmodulin has limited taxonomic utility but that coI, rad24, and actin behave predictably with respect to Symbiodinium lineage C and are potential candidates as new markers for this group. The approach for targeting candidate genes described here can serve as a model for future studies aimed at identifying and testing new phylogenetically informative genes for taxa where transcriptomic and genomics data are available

    Physiological and Psychological Effects of Deception on Pacing Strategy and Performance: A Review

    Get PDF
    The aim of an optimal pacing strategy during exercise is to enhance performance whilst ensuring physiological limits are not surpassed, which has been shown to result in a metabolic reserve at the end of the exercise. There has been debate surrounding the theoretical models that have been proposed to explain how pace is regulated, with more recent research investigating a central control of exercise regulation. Deception has recently emerged as a common, practical approach to manipulate key variables during exercise. There are a number of ways in which deception interventions have been designed, each intending to gain particular insights into pacing behaviour and performance. Deception methodologies can be conceptualised according to a number of dimensions such as deception timing (prior to or during exercise), presentation frequency (blind, discontinuous or continuous) and type of deception (performance, biofeedback or environmental feedback). However, research evidence on the effects of deception has been perplexing and the use of complex designs and varied methodologies makes it difficult to draw any definitive conclusions about how pacing strategy and performance are affected by deception. This review examines existing research in the area of deception and pacing strategies, and provides a critical appraisal of the different methodological approaches used to date. It is hoped that this analysis will inform the direction and methodology of future investigations in this area by addressing the mechanisms through which deception impacts upon performance and by elucidating the potential application of deception techniques in training and competitive settings

    To align or not to align? Research methods and its relationship with dissertation marks across sport undergraduate degree programmes within a UK-based HE institution

    Get PDF
    Much research has referred to the complexity of research methods modules within undergraduate degree programmes. Less attention has been paid to the objective understanding of alignment between research methods and final year dissertations. This study explored relationships across Sport and Exercise Science (SES) and Sports Therapy (ST) programmes within a UK-based Higher Education institution. Analysis revealed females (N=73) outperformed males (N=117) at Levels 4/5, and SES students outperformed ST at Level 6. The Level 5 statistics assessment explained the lowest variance in the dissertation, suggesting poor alignment in curriculum design. Future research should consider the efficacy of statistics-based modules

    The Brain Tumor Segmentation (BraTS) Challenge 2023: Focus on Pediatrics (CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs)

    Full text link
    Pediatric tumors of the central nervous system are the most common cause of cancer-related death in children. The five-year survival rate for high-grade gliomas in children is less than 20\%. Due to their rarity, the diagnosis of these entities is often delayed, their treatment is mainly based on historic treatment concepts, and clinical trials require multi-institutional collaborations. The MICCAI Brain Tumor Segmentation (BraTS) Challenge is a landmark community benchmark event with a successful history of 12 years of resource creation for the segmentation and analysis of adult glioma. Here we present the CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs 2023 challenge, which represents the first BraTS challenge focused on pediatric brain tumors with data acquired across multiple international consortia dedicated to pediatric neuro-oncology and clinical trials. The BraTS-PEDs 2023 challenge focuses on benchmarking the development of volumentric segmentation algorithms for pediatric brain glioma through standardized quantitative performance evaluation metrics utilized across the BraTS 2023 cluster of challenges. Models gaining knowledge from the BraTS-PEDs multi-parametric structural MRI (mpMRI) training data will be evaluated on separate validation and unseen test mpMRI dataof high-grade pediatric glioma. The CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs 2023 challenge brings together clinicians and AI/imaging scientists to lead to faster development of automated segmentation techniques that could benefit clinical trials, and ultimately the care of children with brain tumors

    Interactive Feedforward for Improving Performance and Maintaining Intrinsic Motivation in VR Exergaming

    Get PDF
    Exergames commonly use low to moderate intensity exercise protocols. Their effectiveness in implementing high intensity protocols remains uncertain. We propose a method for improving performance while maintaining intrinsic motivation in high intensity VR exergaming. Our method is based on an interactive adaptation of the feedforward method: a psychophysical training technique achieving rapid improvement in performance by exposing participants to self models showing previously unachieved performance levels. We evaluated our method in a cycling-based exergame. Participants competed against (i) a self model which represented their previous speed; (ii) a self model representing their previous speed but increased resistance therefore requiring higher performance to keep up; or (iii) a virtual competitor at the same two levels of performance. We varied participants' awareness of these differences. Interactive feedforward led to improved performance while maintaining intrinsic motivation even when participants were aware of the interventions, and was superior to competing against a virtual competitor
    corecore