47 research outputs found

    Scientists' warning on extreme wildfire risks to water supply

    Get PDF
    2020 is the year of wildfire records. California experienced its three largest fires early in its fire season. The Pantanal, the largest wetland on the planet, burned over 20% of its surface. More than 18 million hectares of forest and bushland burned during the 2019–2020 fire season in Australia, killing 33 people, destroying nearly 2500 homes, and endangering many endemic species. The direct cost of damages is being counted in dozens of billion dollars, but the indirect costs on water‐related ecosystem services and benefits could be equally expensive, with impacts lasting for decades. In Australia, the extreme precipitation (“200 mm day −1 in several location”) that interrupted the catastrophic wildfire season triggered a series of watershed effects from headwaters to areas downstream. The increased runoff and erosion from burned areas disrupted water supplies in several locations. These post‐fire watershed hazards via source water contamination, flash floods, and mudslides can represent substantial, systemic long‐term risks to drinking water production, aquatic life, and socio‐economic activity. Scenarios similar to the recent event in Australia are now predicted to unfold in the Western USA. This is a new reality that societies will have to live with as uncharted fire activity, water crises, and widespread human footprint collide all‐around of the world. Therefore, we advocate for a more proactive approach to wildfire‐watershed risk governance in an effort to advance and protect water security. We also argue that there is no easy solution to reducing this risk and that investments in both green (i.e., natural) and grey (i.e., built) infrastructure will be necessary. Further, we propose strategies to combine modern data analytics with existing tools for use by water and land managers worldwide to leverage several decades worth of data and knowledge on post‐fire hydrology

    Internet of Things for Sustainable Forestry

    Get PDF
    Forests and grasslands play an important role in water and air purification, prevention of the soil erosion, and in provision of habitat to wildlife. Internet of Things has a tremendous potential to play a vital role in the forest ecosystem management and stability. The conservation of species and habitats, timber production, prevention of forest soil degradation, forest fire prediction, mitigation, and control can be attained through forest management using Internet of Things. The use and adoption of IoT in forest ecosystem management is challenging due to many factors. Vast geographical areas and limited resources in terms of budget and equipment are some of the limiting factors. In digital forestry, IoT deployment offers effective operations, control, and forecasts for soil erosion, fires, and undesirable depositions. In this chapter, IoT sensing and communication applications are presented for digital forestry systems. Different IoT systems for digital forest monitoring applications are also discussed

    SARS-CoV-2-related MIS-C: a key to the viral and genetic causes of Kawasaki disease?

    Get PDF

    Dehydrogenation of the Liquid Organic Hydrogen Carrier System Indole Indoline Octahydroindole on Pt 111

    No full text
    Indole derivatives are considered as promising liquid organic hydrogen carriers for renewable energy storage. Using X-ray photoelectron spectroscopy, temperature-programmed desorption, and infrared reflection–absorption spectroscopy, we investigated low-temperature adsorption and dehydrogenation during heating of indole, indoline, and octahydroindole on Pt(111). For all three molecules, we find deprotonation of the NH bond above 270 K, accompanied with dehydrogenation of indoline and octahydroindole via an indole intermediate, resulting in an indolide species above 300 K. For octahydroindole, we also find a side reaction yielding small amounts of a π-allyl species between 170 and 450 K. Above 450 K, decomposition of the remaining indolide species takes place
    corecore