386 research outputs found

    Body size but not warning signal luminance influences predation risk in recently metamorphosed poison frogs.

    Get PDF
    This is the final version of the article. Available from Wiley via the DOI in this record.During early development, many aposematic species have bright and conspicuous warning appearance, but have yet to acquire chemical defenses, a phenotypic state which presumably makes them vulnerable to predation. Body size and signal luminance in particular are known to be sensitive to variation in early nutrition. However, the relative importance of these traits as determinants of predation risk in juveniles is not known. To address this question, we utilized computer-assisted design (CAD) and information on putative predator visual sensitivities to produce artificial models of postmetamorphic froglets that varied in terms of body size and signal luminance. We then deployed the artificial models in the field and measured rates of attack by birds and unknown predators. Our results indicate that body size was a significant predictor of artificial prey survival. Rates of attack by bird predators were significantly higher on smaller models. However, predation by birds did not differ between artificial models of varying signal luminance. This suggests that at the completion of metamorphosis, smaller froglets may be at a selective disadvantage, potentially because predators can discern they have relatively low levels of chemical defense compared to larger froglets. There is likely to be a premium on efficient foraging, giving rise to rapid growth and the acquisition of toxins from dietary sources in juvenile poison frogs.This study was supported by a PhD scholarship (IFARHU-SENACYT program) and a research grant No. APY-NI-010-006B/ SENACYT both awarded to EEF by the Government of Panama, and by a Royal Society University Research Fellowship to JDB. MS was supported by a Biotechnology and Biological Sciences Research Council David Phillips Research Fellowship (BB/G022887/1). HMR was supported by a Junior Research Fellowship from Churchill College, Cambridge. Special thanks to Rachel Page at STRI for supporting EEF with the grant application, Sistema Nacional de Investigacion de Panama (SNI), and the People of Santa Fe for their collaboration during the stud

    Graph Clustering, Variational Image Segmentation Methods and Hough Transform Scale Detection for Object Measurement in Images

    Get PDF
    © 2016, Springer Science+Business Media New York. We consider the problem of scale detection in images where a region of interest is present together with a measurement tool (e.g. a ruler). For the segmentation part, we focus on the graph-based method presented in Bertozzi and Flenner (Multiscale Model Simul 10(3):1090–1118, 2012) which reinterprets classical continuous Ginzburg–Landau minimisation models in a totally discrete framework. To overcome the numerical difficulties due to the large size of the images considered, we use matrix completion and splitting techniques. The scale on the measurement tool is detected via a Hough transform-based algorithm. The method is then applied to some measurement tasks arising in real-world applications such as zoology, medicine and archaeology

    Technical Note: 4D Deformable Digital Phantom for MRI Sequence Development

    Get PDF
    PURPOSE: MR-guided radiotherapy has different requirements for the images than diagnostic radiology, thus requiring development of novel imaging sequences. MRI simulation is an excellent tool for optimising these new sequences, however currently available software does not provide all the necessary features. In this paper we present a digital framework for testing MRI sequences that incorporates anatomical structure, respiratory motion and realistic presentation of MR physics. METHODS: The extended Cardiac-Torso (XCAT) software was used to create T1, T2 and proton density maps that formed the anatomical structure of the phantom. Respiratory motion model was based on the XCAT deformation vector fields, modified to create a motion model driven by a respiration signal. MRI simulation was carried out with JEMRIS, an open source Bloch simulator. We developed an extension for JEMRIS, which calculates the motion of each spin independently, allowing for deformable motion. RESULTS: The performance of the framework was demonstrated through simulating the acquisition of a 2D cine and demonstrating expected motion ghosts from T2 weighted spin echo acquisitions with different respiratory patterns. All simulations were consistent with behaviour previously described in literature. Simulations with deformable motion were not more time consuming than with rigid motion. CONCLUSIONS: We present a deformable 4D digital phantom framework for MR sequence development. The framework incorporates anatomical structure, realistic breathing patterns, deformable motion and Bloch simulation to achieve accurate simulation of MRI. This method is particularly relevant for testing novel imaging

    Use of a Semi-field System to Evaluate the Efficacy of Topical Repellents under user Conditions Provides a Disease Exposure free Technique Comparable with Field Data.

    Get PDF
    Before topical repellents can be employed as interventions against arthropod bites, their efficacy must be established. Currently, laboratory or field tests, using human volunteers, are the main methods used for assessing the efficacy of topical repellents. However, laboratory tests are not representative of real life conditions under which repellents are used and field-testing potentially exposes human volunteers to disease. There is, therefore, a need to develop methods to test efficacy of repellents under real life conditions while minimizing volunteer exposure to disease. A lotion-based, 15% N, N-Diethyl-3-methylbenzamide (DEET) repellent and 15% DEET in ethanol were compared to a placebo lotion in a 200 sq m (10 m x 20 m) semi-field system (SFS) against laboratory-reared Anopheles arabiensis mosquitoes and in full field settings against wild malaria vectors and nuisance-biting mosquitoes. The average percentage protection against biting mosquitoes over four hours in the SFS and field setting was determined. A Poisson regression model was then used to determine relative risk of being bitten when wearing either of these repellents compared to the placebo. Average percentage protection of the lotion-based 15% DEET repellent after four hours of mosquito collection was 82.13% (95% CI 75.94-88.82) in the semi-field experiments and 85.10% (95% CI 78.97-91.70) in the field experiments. Average percentage protection of 15% DEET in ethanol after four hours was 71.29% (CI 61.77-82.28) in the semi-field system and 88.24% (84.45-92.20) in the field. Semi-field evaluation results were comparable to full-field evaluations, indicating that such systems could be satisfactorily used in measuring efficacy of topically applied mosquito repellents, thereby avoiding risks of exposure to mosquito-borne pathogens, associated with field testing

    Optimizing the colour and fabric of targets for the control of the tsetse fly Glossina fuscipes fuscipes

    Get PDF
    Background: Most cases of human African trypanosomiasis (HAT) start with a bite from one of the subspecies of Glossina fuscipes. Tsetse use a range of olfactory and visual stimuli to locate their hosts and this response can be exploited to lure tsetse to insecticide-treated targets thereby reducing transmission. To provide a rational basis for cost-effective designs of target, we undertook studies to identify the optimal target colour. Methodology/Principal Findings: On the Chamaunga islands of Lake Victoria , Kenya, studies were made of the numbers of G. fuscipes fuscipes attracted to targets consisting of a panel (25 cm square) of various coloured fabrics flanked by a panel (also 25 cm square) of fine black netting. Both panels were covered with an electrocuting grid to catch tsetse as they contacted the target. The reflectances of the 37 different-coloured cloth panels utilised in the study were measured spectrophotometrically. Catch was positively correlated with percentage reflectance at the blue (460 nm) wavelength and negatively correlated with reflectance at UV (360 nm) and green (520 nm) wavelengths. The best target was subjectively blue, with percentage reflectances of 3%, 29%, and 20% at 360 nm, 460 nm and 520 nm respectively. The worst target was also, subjectively, blue, but with high reflectances at UV (35% reflectance at 360 nm) wavelengths as well as blue (36% reflectance at 460 nm); the best low UV-reflecting blue caught 3× more tsetse than the high UV-reflecting blue. Conclusions/Significance: Insecticide-treated targets to control G. f. fuscipes should be blue with low reflectance in both the UV and green bands of the spectrum. Targets that are subjectively blue will perform poorly if they also reflect UV strongly. The selection of fabrics for targets should be guided by spectral analysis of the cloth across both the spectrum visible to humans and the UV region

    Ecology: a prerequisite for malaria elimination and eradication

    Get PDF
    * Existing front-line vector control measures, such as insecticide-treated nets and residual sprays, cannot break the transmission cycle of Plasmodium falciparum in the most intensely endemic parts of Africa and the Pacific * The goal of malaria eradication will require urgent strategic investment into understanding the ecology and evolution of the mosquito vectors that transmit malaria * Priority areas will include understanding aspects of the mosquito life cycle beyond the blood feeding processes which directly mediate malaria transmission * Global commitment to malaria eradication necessitates a corresponding long-term commitment to vector ecolog

    Involvement of a Natural Fusion of a Cytochrome P450 and a Hydrolase in Mycophenolic Acid Biosynthesis

    Get PDF
    Mycophenolic acid (MPA) is a fungal secondary metabolite and the active component in several immunosuppressive pharmaceuticals. The gene cluster coding for the MPA biosynthetic pathway has recently been discovered in Penicillium brevicompactum, demonstrating that the first step is catalyzed by MpaC, a polyketide synthase producing 5-methylorsellinic acid (5-MOA). However, the biochemical role of the enzymes encoded by the remaining genes in the MPA gene cluster is still unknown. Based on bioinformatic analysis of the MPA gene cluster, we hypothesized that the step following 5-MOA production in the pathway is carried out by a natural fusion enzyme MpaDE, consisting of a cytochrome P450 (MpaD) in the N-terminal region and a hydrolase (MpaE) in the C-terminal region. We verified that the fusion gene is indeed expressed in P. brevicompactum by obtaining full-length sequence of the mpaDE cDNA prepared from the extracted RNA. Heterologous coexpression of mpaC and the fusion gene mpaDE in the MPA-nonproducer Aspergillus nidulans resulted in the production of 5,7-dihydroxy-4-methylphthalide (DHMP), the second intermediate in MPA biosynthesis. Analysis of the strain coexpressing mpaC and the mpaD part of mpaDE shows that the P450 catalyzes hydroxylation of 5-MOA to 4,6-dihydroxy-2-(hydroxymethyl)-3-methylbenzoic acid (DHMB). DHMB is then converted to DHMP, and our results suggest that the hydrolase domain aids this second step by acting as a lactone synthase that catalyzes the ring closure. Overall, the chimeric enzyme MpaDE provides insight into the genetic organization of the MPA biosynthesis pathway

    Varicella-zoster virus infections in immunocompromised patients - a single centre 6-years analysis

    Get PDF
    Background: Infection with varicella-zoster virus (VZV) contemporaneously with malignant disease or immunosuppression represents a particular challenge and requires individualized decisions and treatment. Although the increasing use of varicella-vaccines in the general population and rapid initiation of VZVimmunoglobulins and acyclovir in case of exposure has been beneficial for some patients, immunocompromised individuals are still at risk for unfavourable courses. Methods: In this single center, 6-year analysis we review incidence, hospitalization and complication rates of VZVinfections in our center and compare them to published data. Furthermore, we report three instructive cases. Results: Hospitalization rate of referred children with VZV-infections was 45%, among these 17% with malignancies and 9% under immunosuppressive therapy. Rate of complications was not elevated in these two high-risk cohorts, but one ALL-patient died due to VZV-related complications. We report one 4-year old boy with initial diagnosis of acute lymphoblastic leukemia who showed a rapidly fatal outcome of his simultaneous varicella-infection, one 1.8-year old boy with an identical situation but a mild course of his disease, and an 8.5-year old boy with a steroiddependent nephrotic syndrome. This boy developed severe hepatic involvement during his varicella-infection but responded to immediate withdrawl of steroids and administration of acyclovir plus single-dose cidofovir after nonresponse to acyclovir after 48 h. Conclusion: Our data show that patients with malignant diseases or immunosuppressive therapy should be hospitalized and treated immediately with antiviral agents. Despite these measures the course of VZV-infections can be highly variable in these patients. We discuss aids to individual decision-making for these difficult situations
    corecore