107 research outputs found

    Inflammatory Markers and Outcomes in Cardiovascular Disease

    Get PDF
    In a commentary on two new research studies in PLoS Medicine, Leonard Kritharides discusses the role of inflammatory markers in predicting cardiovascular outcomes and patients' responses to treatment

    P-Element Homing Is Facilitated by engrailed Polycomb-Group Response Elements in Drosophila melanogaster

    Get PDF
    P-element vectors are commonly used to make transgenic Drosophila and generally insert in the genome in a nonselective manner. However, when specific fragments of regulatory DNA from a few Drosophila genes are incorporated into P-transposons, they cause the vectors to be inserted near the gene from which the DNA fragment was derived. This is called P-element homing. We mapped the minimal DNA fragment that could mediate homing to the engrailed/invected region of the genome. A 1.6 kb fragment of engrailed regulatory DNA that contains two Polycomb-group response elements (PREs) was sufficient for homing. We made flies that contain a 1.5kb deletion of engrailed DNA (enΔ1.5) in situ, including the PREs and the majority of the fragment that mediates homing. Remarkably, homing still occurs onto the enΔ1. 5 chromosome. In addition to homing to en, P[en] inserts near Polycomb group target genes at an increased frequency compared to P[EPgy2], a vector used to generate 18,214 insertions for the Drosophila gene disruption project. We suggest that homing is mediated by interactions between multiple proteins bound to the homing fragment and proteins bound to multiple areas of the engrailed/invected chromatin domain. Chromatin structure may also play a role in homing

    Immunogenicity of Therapeutic Proteins: The Use of Animal Models

    Get PDF
    Immunogenicity of therapeutic proteins lowers patient well-being and drastically increases therapeutic costs. Preventing immunogenicity is an important issue to consider when developing novel therapeutic proteins and applying them in the clinic. Animal models are increasingly used to study immunogenicity of therapeutic proteins. They are employed as predictive tools to assess different aspects of immunogenicity during drug development and have become vital in studying the mechanisms underlying immunogenicity of therapeutic proteins. However, the use of animal models needs critical evaluation. Because of species differences, predictive value of such models is limited, and mechanistic studies can be restricted. This review addresses the suitability of animal models for immunogenicity prediction and summarizes the insights in immunogenicity that they have given so far

    Identifying Low pH Active and Lactate-Utilizing Taxa within Oral Microbiome Communities from Healthy Children Using Stable Isotope Probing Techniques

    Get PDF
    <div><h3>Background</h3><p>Many human microbial infectious diseases including dental caries are polymicrobial in nature. How these complex multi-species communities evolve from a healthy to a diseased state is not well understood. Although many health- or disease-associated oral bacteria have been characterized <em>in vitro</em>, their physiology within the complex oral microbiome is difficult to determine with current approaches. In addition, about half of these species remain uncultivated to date with little known besides their 16S rRNA sequence. Lacking culture-based physiological analyses, the functional roles of uncultivated species will remain enigmatic despite their apparent disease correlation. To start addressing these knowledge gaps, we applied a combination of Magnetic Resonance Spectroscopy (MRS) with RNA and DNA based Stable Isotope Probing (SIP) to oral plaque communities from healthy children for <em>in vitro</em> temporal monitoring of metabolites and identification of metabolically active and inactive bacterial species.</p> <h3>Methodology/Principal Findings</h3><p>Supragingival plaque samples from caries-free children incubated with <sup>13</sup>C-substrates under imposed healthy (buffered, pH 7) and diseased states (pH 5.5 and pH 4.5) produced lactate as the dominant organic acid from glucose metabolism. Rapid lactate utilization upon glucose depletion was observed under pH 7 conditions. SIP analyses revealed a number of genera containing cultured and uncultivated taxa with metabolic capabilities at pH 5.5. The diversity of active species decreased significantly at pH 4.5 and was dominated by <em>Lactobacillus</em> and <em>Propionibacterium</em> species, both of which have been previously found within carious lesions from children.</p> <h3>Conclusions/Significance</h3><p>Our approach allowed for identification of species that metabolize carbohydrates under different pH conditions and supports the importance of Lactobacilli and Propionibacterium in the development of childhood caries. Identification of species within healthy subjects that are active at low pH can lead to a better understanding of oral caries onset and generate appropriate targets for preventative measures in the early stages.</p> </div

    Predictive Value of POSSUM and ACPGBI Scoring in Mortality and Morbidity of Colorectal Resection: A Case–Control Study

    Get PDF
    Contains fulltext : 97239.pdf (publisher's version ) (Open Access)BACKGROUND: Preoperative risk prediction to assess mortality and morbidity may be helpful to surgical decision making. The aim of this study was to compare mortality and morbidity of colorectal resections performed in a tertiary referral center with mortality and morbidity as predicted with physiological and operative score for enumeration of mortality and morbidity (POSSUM), Portsmouth POSSUM (P-POSSUM), and colorectal POSSUM (CR-POSSUM). The second aim of this study was to analyze the accuracy of different POSSUM scores in surgery performed for malignancy, inflammatory bowel diseases, and diverticulitis. POSSUM scoring was also evaluated in colorectal resection in acute vs. elective setting. In procedures performed for malignancy, the Association of Coloproctology of Great Britain and Ireland (ACPGBI) score was assessed in the same way for comparison. METHODS: POSSUM, P-POSSUM, and CR-POSSUM predictor equations for mortality were applied in a retrospective case-control study to 734 patients who had undergone colorectal resection. The total group was assessed first. Second, the predictive value of outcome after surgery was assessed for malignancy (n = 386), inflammatory bowel diseases (n = 113), diverticulitis (n = 91), and other indications, e.g., trauma, endometriosis, volvulus, or ischemia (n = 144). Third, all subgroups were assessed in relation to the setting in which surgery was performed: acute or elective. In patients with malignancy, the ACPGBI score was calculated as well. In all groups, receiver operating characteristic (ROC) curves were constructed. RESULTS: POSSUM, P-POSSUM, and CR-POSSUM have a significant predictive value for outcome after colorectal surgery. Within the total population as well as in all four subgroups, there is no difference in the area under the curve between the POSSUM, P-POSSUM, and CR-POSSUM scores. In the subgroup analysis, smallest areas under the ROC curve are seen in operations performed for malignancy, which is significantly worse than for diverticulitis and in operations performed for other indications. For elective procedures, P-POSSUM and CR-POSSUM predict outcome significantly worse in patients operated for carcinoma than in patients with diverticulitis. In acute surgical interventions, CR-POSSUM predicts mortality better in diverticulitis than in patients operated for other indications. The ACPGBI score has a larger area under the curve than any of the POSSUM scores. Morbidity as predicted by POSSUM is most accurate in procedures for diverticulitis and worst when the indication is malignancy. CONCLUSION: The POSSUM scores predict outcome significantly better than can be expected by chance alone. Regarding the indication for surgery, each POSSUM score predicts outcome in patients operated for diverticulitis or other indications more accurately than for malignancy. The ACPGBI score is found to be superior to the various POSSUM scores in patients who have (elective) resection of colorectal malignancy

    A stable pattern of EEG spectral coherence distinguishes children with autism from neuro-typical controls - a large case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The autism rate has recently increased to 1 in 100 children. Genetic studies demonstrate poorly understood complexity. Environmental factors apparently also play a role. Magnetic resonance imaging (MRI) studies demonstrate increased brain sizes and altered connectivity. Electroencephalogram (EEG) coherence studies confirm connectivity changes. However, genetic-, MRI- and/or EEG-based diagnostic tests are not yet available. The varied study results likely reflect methodological and population differences, small samples and, for EEG, lack of attention to group-specific artifact.</p> <p>Methods</p> <p>Of the 1,304 subjects who participated in this study, with ages ranging from 1 to 18 years old and assessed with comparable EEG studies, 463 children were diagnosed with autism spectrum disorder (ASD); 571 children were neuro-typical controls (C). After artifact management, principal components analysis (PCA) identified EEG spectral coherence factors with corresponding loading patterns. The 2- to 12-year-old subsample consisted of 430 ASD- and 554 C-group subjects (n = 984). Discriminant function analysis (DFA) determined the spectral coherence factors' discrimination success for the two groups. Loading patterns on the DFA-selected coherence factors described ASD-specific coherence differences when compared to controls.</p> <p>Results</p> <p>Total sample PCA of coherence data identified 40 factors which explained 50.8% of the total population variance. For the 2- to 12-year-olds, the 40 factors showed highly significant group differences (<it>P </it>< 0.0001). Ten randomly generated split half replications demonstrated high-average classification success (C, 88.5%; ASD, 86.0%). Still higher success was obtained in the more restricted age sub-samples using the jackknifing technique: 2- to 4-year-olds (C, 90.6%; ASD, 98.1%); 4- to 6-year-olds (C, 90.9%; ASD 99.1%); and 6- to 12-year-olds (C, 98.7%; ASD, 93.9%). Coherence loadings demonstrated reduced short-distance and reduced, as well as increased, long-distance coherences for the ASD-groups, when compared to the controls. Average spectral loading per factor was wide (10.1 Hz).</p> <p>Conclusions</p> <p>Classification success suggests a stable coherence loading pattern that differentiates ASD- from C-group subjects. This might constitute an EEG coherence-based phenotype of childhood autism. The predominantly reduced short-distance coherences may indicate poor local network function. The increased long-distance coherences may represent compensatory processes or reduced neural pruning. The wide average spectral range of factor loadings may suggest over-damped neural networks.</p

    Impact of vaccination on the association of COVID-19 with cardiovascular diseases: An OpenSAFELY cohort study

    Get PDF
    AbstractInfection with SARS-CoV-2 is associated with an increased risk of arterial and venous thrombotic events, but the implications of vaccination for this increased risk are uncertain. With the approval of NHS England, we quantified associations between COVID-19 diagnosis and cardiovascular diseases in different vaccination and variant eras using linked electronic health records for ~40% of the English population. We defined a ‘pre-vaccination’ cohort (18,210,937 people) in the wild-type/Alpha variant eras (January 2020-June 2021), and ‘vaccinated’ and ‘unvaccinated’ cohorts (13,572,399 and 3,161,485 people respectively) in the Delta variant era (June-December 2021). We showed that the incidence of each arterial thrombotic, venous thrombotic and other cardiovascular outcomes was substantially elevated during weeks 1-4 after COVID-19, compared with before or without COVID-19, but less markedly elevated in time periods beyond week 4. Hazard ratios were higher after hospitalised than non-hospitalised COVID-19 and higher in the pre-vaccination and unvaccinated cohorts than the vaccinated cohort. COVID-19 vaccination reduces the risk of cardiovascular events after COVID-19 infection. People who had COVID-19 before or without being vaccinated are at higher risk of cardiovascular events for at least two years.</jats:p

    The impact of viral mutations on recognition by SARS-CoV-2 specific T cells.

    Get PDF
    We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.This work is supported by the UK Medical Research Council (MRC); Chinese Academy of Medical Sciences(CAMS) Innovation Fund for Medical Sciences (CIFMS), China; National Institute for Health Research (NIHR)Oxford Biomedical Research Centre, and UK Researchand Innovation (UKRI)/NIHR through the UK Coro-navirus Immunology Consortium (UK-CIC). Sequencing of SARS-CoV-2 samples and collation of data wasundertaken by the COG-UK CONSORTIUM. COG-UK is supported by funding from the Medical ResearchCouncil (MRC) part of UK Research & Innovation (UKRI),the National Institute of Health Research (NIHR),and Genome Research Limited, operating as the Wellcome Sanger Institute. T.I.d.S. is supported by a Well-come Trust Intermediate Clinical Fellowship (110058/Z/15/Z). L.T. is supported by the Wellcome Trust(grant number 205228/Z/16/Z) and by theUniversity of Liverpool Centre for Excellence in Infectious DiseaseResearch (CEIDR). S.D. is funded by an NIHR GlobalResearch Professorship (NIHR300791). L.T. and S.C.M.are also supported by the U.S. Food and Drug Administration Medical Countermeasures Initiative contract75F40120C00085 and the National Institute for Health Research Health Protection Research Unit (HPRU) inEmerging and Zoonotic Infections (NIHR200907) at University of Liverpool inpartnership with Public HealthEngland (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford.L.T. is based at the University of Liverpool. M.D.P. is funded by the NIHR Sheffield Biomedical ResearchCentre (BRC – IS-BRC-1215-20017). ISARIC4C is supported by the MRC (grant no MC_PC_19059). J.C.K.is a Wellcome Investigator (WT204969/Z/16/Z) and supported by NIHR Oxford Biomedical Research Centreand CIFMS. The views expressed are those of the authors and not necessarily those of the NIHR or MRC

    Infections up to 76 days after stroke increase disability and death

    Get PDF
    Early infection after stroke is associated with a poor outcome. We aimed to determine whether delayed infections (up to 76 days post-stroke) are associated with poor outcome at 90 days. Data came from the international Efficacy of Nitric Oxide Stroke (ENOS, ISRCTN99414122) trial. Post hoc data on infections were obtained from serious adverse events reports between 1 and 76 days following stroke in this large cohort of patients. Regression models accounting for baseline covariates were used to analyse fatalities and functional outcomes (modified Rankin Scale (mRS), Barthel Index, Euro-Qol-5D) at 90 days, in patients with infection compared to those without infection. Of 4011 patients, 242 (6.0%) developed one or more serious infections. Infections were associated with an increased risk of death (p < 0.001) and an increased likelihood of dependency (measured by mRS) compared to those of all other patients (p < 0.001). This remained when only surviving patients were analysed, indicating that the worsening of functional outcome is not due to mortality (p < 0.001). In addition, the timing of the infection after stroke did not alter its detrimental association with fatality (p = 0.14) or functional outcome (p = 0.47). In conclusion, severe post-stroke infections, whether occurring early or late after stroke, are associated with an increased risk of death and poorer functional outcome, independent of differences in baseline characteristics or treatment. Not only are strategies needed for reducing the risk of infection immediately after stroke, but also during the first 3 months following a stroke. This study is registered: ISRCTN registry, number ISRCTN99414122, ClinicalTrials.gov Identifier, NCT00989716
    • …
    corecore