4 research outputs found

    In vitro toxicokinetics and analytical toxicology of three novel NBOMe derivatives - Phase I and II metabolism, plasma protein binding, and detectability in standard urine screening approaches studied by means of hyphenated mass spectrometry

    Get PDF
    Purpose Toxicokinetic studies are essential in clinical and forensic toxicology to understand drug-drug interactions, influence of individual polymorphisms, and elimination routes, as well as to evaluate targets for toxicological screening procedures. An N-(2-methoxybenzyl)-substituted phenethylamines (NBOMe analogues) intake has been associated with severe adverse reactions including deaths. 1-(1-Benzofuran-5-yl)-N-[(2-methoxyphenyl)methyl]propan-2-amine (5-APB-NBOMe), 2-(8-bromo-2,3,6,7-tetrahydrobenzo[1,2-b:4,5-b′]difuran-4-yl)-N-[(5-chloro-2-ethoxyphenyl)methyl]ethan-1-amine (2C-B-FLY-NB2EtO5Cl), and 2-(8-bromo-2,3,6,7-tetrahydrobenzo[1,2-b:4,5-b′]difuran-4-yl)-N-[(2-methoxyphenyl)methyl]ethan-1-amine (2C-BFLY-NBOMe) are three emerging NBOMe analogues, which have encountered on the drugs of abuse market. So far, their toxicokinetic data are completely unexplored. Methods The study included mass spectrometry-based identification of phase I and II metabolites following exposure to the terminally differentiated human hepatocellular carcinoma cells (HepaRG). The determination of enzymes involved in the major phase I/II metabolic steps and determination of plasma protein binding (PPB) was done. Finally, the evaluation of the toxicological detectability by different hyphenated mass spectrometry techniques in standard urine screening approaches (SUSAs) was investigated. Results The compounds were extensively metabolized in HepaRG cells mainly via O-dealkylation, hydroxylation, glucuronidation, and combinations thereof. CYP1A2, 2D6, 2C8, 2C19, and 3A4, were involved in the initial reactions of all investigated compounds. Glucuronidation of the phase I metabolites – when observed - was mainly catalyzed by UGT1A9. The PPB of all compounds was determined to be > 85%. Only the high-resolution mass spectrometry-based SUSA allowed detection of all compounds in rat urine but only via metabolites. Conclusions The toxicokinetic data provided by this study will help forensic and clinical toxicologists to reliably identify these substances in case of abuse and/or intoxication and will allow them a thorough risk assessment

    Syntheses and analytical characterizations of novel (2-aminopropyl)benzo[b]thiophene (APBT) based stimulants

    No full text
    Two groups of amphetamine-like drugs with psychostimulant properties that were first developed during the course of scientific studies and later emerged as new psychoactive substances (NPS) are based on the (2-aminopropyl)indole (API) and (2-aminopropyl)benzofuran (APB) structural scaffolds. However, sulfur-based analogs with a benzo[b]thiophene structure (resulting in (2-aminopropyl)benzo[b]thiophene (APBT) derivatives) have received little attention. In the present investigation, all six racemic APBT positional isomers were synthesized in an effort to understand their structure-activity relationships relative to API- and APB-based drugs. One lesson learned from the NPS phenomenon is that one cannot exclude the appearance of such substances on the market. Therefore, an in-depth analytical characterization was performed, including various single- and tandem mass spectrometry (MS) and ionization platforms coupled to gas chromatography (GC) and liquid chromatography (LC), nuclear magnetic resonance spectroscopy (NMR), and solid phase and GC condensed phase infrared spectroscopy (GC-sIR). Various derivatizations have also been explored; it was found that all six APBT isomers could be differentiated during GC analysis after derivatization with heptfluorobutyric anhydride and ethyl chloroformate (or heptfluorobutyric anhydride and acetic anhydride) under non-routine conditions. Discriminating analytical features can also be derived from NMR, GC-EI/CI- single- and tandem mass spectrometry, LC (pentafluorophenyl stationary phase), and various infrared spectroscopy approaches (including GC-sIR). Availability of detailed analytical data obtained from these novel APBT-type stimulants may be useful to researchers and scientists in cases where forensic and clinical investigations are warranted

    Physical role of nuclear and cytoskeletal confinements in cell migration mode selection and switching

    No full text

    Die Vererbung von Augenleiden

    No full text
    corecore