9 research outputs found

    Environmental regulation of carbon isotope composition and crassulacean acid metabolism in three plant communities along a water availability gradient

    Get PDF
    Expression of crassulacean acid metabolism (CAM) is characterized by extreme variability within and between taxa and its sensitivity to environmental variation. In this study, we determined seasonal fluctuations in CAM photosynthesis with measurements of nocturnal tissue acidification and carbon isotopic composition (δ13C) of bulk tissue and extracted sugars in three plant communities along a precipitation gradient (500, 700, and 1,000 mm year−1) on the Yucatan Peninsula. We also related the degree of CAM to light habitat and relative abundance of species in the three sites. For all species, the greatest tissue acid accumulation occurred during the rainy season. In the 500 mm site, tissue acidification was greater for the species growing at 30% of daily total photon flux density (PFD) than species growing at 80% PFD. Whereas in the two wetter sites, the species growing at 80% total PFD had greater tissue acidification. All species had values of bulk tissue δ13C less negative than −20‰, indicating strong CAM activity. The bulk tissue δ13C values in plants from the 500 mm site were 2‰ less negative than in plants from the wetter sites, and the only species growing in the three communities, Acanthocereus tetragonus (Cactaceae), showed a significant negative relationship between both bulk tissue and sugar δ13C values and annual rainfall, consistent with greater CO2 assimilation through the CAM pathway with decreasing water availability. Overall, variation in the use of CAM photosynthesis was related to water and light availability and CAM appeared to be more ecologically important in the tropical dry forests than in the coastal dune

    Room temperature multiferroicity in a transition metal dichalcogenide

    No full text
    Abstract The coexistence of multiple ferroic orders, i.e., multiferroicity, is a scarce property to be found in materials. Historically, this state has been found mainly in 3-dimensional complex oxides, but so far, this state has still been elusive for the most widely studied and characterized family of 2-dimensional compounds, the transition metal dichalcogenides. In this study, we report the experimental realization of multiferroic states in this family of materials, at room temperature, in bulk single crystals of Te-doped WSe2. We observe the coexistence of ferromagnetism and ferroelectricity, evidenced in the presence of magnetization and piezoresponse force microscopy hysteresis loops. These findings open the possibility of widening the use and study of van der Waals-based multifunctional devices for nanoelectronics and spintronics applications

    Seasonal hydrochemical variation in a tropical coastal lagoon (Açu Lagoon, Brazil)

    No full text
    Hydrochemical conditions in the Açu Lagoon are described using spatial and temporal variations of various limnological variables (water temperature, dissolved oxygen, electric conductivity, total alkalinity, carbon dioxide, dissolved and total nutrients (N, P and Si), and chlorophyll a). Collected data was used in order to understand the structure and functioning of an enclosed coastal lagoon strongly influenced by climatic conditions. Water samples were collected monthly (November 1999-December 2000) in five sampling stations established along the lagoon. A decreasing spatial gradient of electrical conductivity was observed beginning from a sand bar region between the lagoon and the sea in the direction of the sweet-water input area. The positive correlation observed between the pH and dissolved oxygen (DO) values, and the negative one observed between pH values and those of carbon dioxide (CO2), evidenced coupled biological processes, e.g., primary production and decomposition. Both spatial and temporal variation of dissolved nutrients showed fast increase and decrease in the beginning of summer, suggesting that nutrient input resulting from rainfall stimulates phytoplankton production, as reflected by chlorophyll a concentration increase

    Notes for genera – Ascomycota

    No full text
    Knowledge of the relationships and thus the classification of fungi, has developed rapidly with increasingly widespread use of molecular techniques, over the past 10--15 years, and continues to accelerate. Several genera have been found to be polyphyletic, and their generic concepts have subsequently been emended. New names have thus been introduced for species which are phylogenetically distinct from the type species of particular genera. The ending of the separate naming of morphs of the same species in 2011, has also caused changes in fungal generic names. In order to facilitate access to all important changes, it was desirable to compile these in a single document. The present article provides a list of generic names of Ascomycota (approximately 6500 accepted names published to the end of 2016), including those which are lichen-forming. Notes and summaries of the changes since the last edition of `Ainsworth Bisby's Dictionary of the Fungi' in 2008 are provided. The notes include the number of accepted species, classification, type species (with location of the type material), culture availability, life-styles, distribution, and selected publications that have appeared since 2008. This work is intended to provide the foundation for updating the ascomycete component of the ``Without prejudice list of generic names of Fungi'' published in 2013, which will be developed into a list of protected generic names. This will be subjected to the XIXth International Botanical Congress in Shenzhen in July 2017 agreeing to a modification in the rules relating to protected lists, and scrutiny by procedures determined by the Nomenclature Committee for Fungi (NCF). The previously invalidly published generic names Barriopsis, Collophora (as Collophorina), Cryomyces, Dematiopleospora, Heterospora (as Heterosporicola), Lithophila, Palmomyces (as Palmaria) and Saxomyces are validated, as are two previously invalid family names, Bartaliniaceae and Wiesneriomycetaceae. Four species of Lalaria, which were invalidly published are transferred to Taphrina and validated as new combinations. Catenomycopsis Tibell Constant. is reduced under Chaenothecopsis Vain., while Dichomera Cooke is reduced under Botryosphaeria Ces. De Not. (Art. 59)
    corecore