21 research outputs found

    Associations of short-term exposure to traffic-related air pollution with cardiovascular and respiratory hospital admissions in London, UK.

    Get PDF
    OBJECTIVES: There is evidence of adverse associations between short-term exposure to traffic-related pollution and health, but little is known about the relative contribution of the various sources and particulate constituents. METHODS: For each day for 2011-2012 in London, UK over 100 air pollutant metrics were assembled using monitors, modelling and chemical analyses. We selected a priori metrics indicative of traffic sources: general traffic, petrol exhaust, diesel exhaust and non-exhaust (mineral dust, brake and tyre wear). Using Poisson regression models, controlling for time-varying confounders, we derived effect estimates for cardiovascular and respiratory hospital admissions at prespecified lags and evaluated the sensitivity of estimates to multipollutant modelling and effect modification by season. RESULTS: For single day exposure, we found consistent associations between adult (15-64 years) cardiovascular and paediatric (0-14 years) respiratory admissions with elemental and black carbon (EC/BC), ranging from 0.56% to 1.65% increase per IQR change, and to a lesser degree with carbon monoxide (CO) and aluminium (Al). The average of past 7 days EC/BC exposure was associated with elderly (65+ years) cardiovascular admissions. Indicated associations were higher during the warm period of the year. Although effect estimates were sensitive to the adjustment for other pollutants they remained consistent in direction, indicating independence of associations from different sources, especially between diesel and petrol engines, as well as mineral dust. CONCLUSIONS: Our results suggest that exhaust related pollutants are associated with increased numbers of adult cardiovascular and paediatric respiratory hospitalisations. More extensive monitoring in urban centres is required to further elucidate the associations

    Evaluation of the public health impacts of traffic congestion: a health risk assessment

    Get PDF
    Background: Traffic congestion is a significant issue in urban areas in the United States and around the world. Previous analyses have estimated the economic costs of congestion, related to fuel and time wasted, but few have quantified the public health impacts or determined how these impacts compare in magnitude to the economic costs. Moreover, the relative magnitudes of economic and public health impacts of congestion would be expected to vary significantly across urban areas, as a function of road infrastructure, population density, and atmospheric conditions influencing pollutant formation, but this variability has not been explored. Methods: In this study, we evaluate the public health impacts of ambient exposures to fine particulate matter (PM2.5) concentrations associated with a business-as-usual scenario of predicted traffic congestion. We evaluate 83 individual urban areas using traffic demand models to estimate the degree of congestion in each area from 2000 to 2030. We link traffic volume and speed data with the MOBILE6 model to characterize emissions of PM2.5 and particle precursors attributable to congestion, and we use a source-receptor matrix to evaluate the impact of these emissions on ambient PM2.5 concentrations. Marginal concentration changes are related to a concentration-response function for mortality, with a value of statistical life approach used to monetize the impacts. Results: We estimate that the monetized value of PM2.5-related mortality attributable to congestion in these 83 cities in 2000 was approximately 31billion(2007dollars),ascomparedwithavalueoftimeandfuelwastedof31 billion (2007 dollars), as compared with a value of time and fuel wasted of 60 billion. In future years, the economic impacts grow (to over 100billionin2030)whilethepublichealthimpactsdecreaseto100 billion in 2030) while the public health impacts decrease to 13 billion in 2020 before increasing to $17 billion in 2030, given increasing population and congestion but lower emissions per vehicle. Across cities and years, the public health impacts range from more than an order of magnitude less to in excess of the economic impacts. Conclusions: Our analyses indicate that the public health impacts of congestion may be significant enough in magnitude, at least in some urban areas, to be considered in future evaluations of the benefits of policies to mitigate congestion

    Impacts of highway traffic exhaust in alpine valleys on the respiratory health in adults: a cross-sectional study

    Get PDF
    BACKGROUND: Most studies having shown respiratory health effects from traffic exhaust were conducted in urban areas with a complex mixture of air pollution sources. This study has investigated the potential impact of traffic exhaust on respiratory symptoms among adults living along a Swiss alpine highway corridor, where traffic exhaust from the respective trans-Alpine highway is the predominant source of air pollution. METHODS: In summer 2005, we recruited 1839 adults aged 15 to 70 from a random sample of 10 communities along the Swiss alpine highway corridors. Subjects answered a questionnaire on respiratory health (asthmatic and bronchitic symptoms), risk factors, and potential confounding variables. We used logistic regression models to assess associations between respiratory symptoms and traffic exposure being defined a) as living within 200 m of the highway, and b) as a bell-shaped function simulating the decrease of pollution levels with increasing distance to the highway. RESULTS: Positive associations were found between living close to a highway and wheezing without cold (OR = 3.10, 95%-CI: 1.27-7.55) and chronic cough (OR = 2.88, 95%-CI: 1.17-7.05). The models using a bell-shaped function suggested that symptoms reached background levels after 400-500 m from the highway. The association with chronic cough was driven by a subgroup reporting hay fever or allergic rhinitis. CONCLUSIONS: Highway traffic exhaust in alpine highway corridors, in the absence of other industrial sources, showed negative associations with the respiratory health of adults, higher than those previously found in urban areas

    Multiple-input-multiple-output general regression neural networks model for the simultaneous estimation of traffic-related air pollutant emissions

    No full text
    Traffic-related air pollutant emissions have become a global environmental problem, especially in urban areas. The estimation of pollutant emissions is based on complex models that require the use of detailed travel-activity data, which is often unavailable and in particular, in developing countries. In order to overcome this issue, an alternative multiple-input-multiple-output general regression neural network model, based on basic socioeconomic and transport related indicators, is proposed for the simultaneous prediction of sulphur oxides (SOx), nitrogen oxides (NOx), ammonia (NH3 ), non-methane volatile organic compounds (NMVOC) and particulate matter emissions at the national level. The best model, created using only six inputs, has MAPE (mean absolute percentage error) values on testing in the range of 12-15% for all studied pollutants, except NMVOC (MAPE = 21%). The obtained predictions for SOx, NH3 and PM10 emissions were in good agreement with the reported emissions (R-2 gt = 0.93), while the predictions for NOx and NMVOC are somewhat less accurate (R-2 approximate to 0.85). It can be concluded that the presented ANN approach can offer a simple and relatively accurate alternative method for the estimation of traffic-related air pollutant emissions
    corecore