72 research outputs found

    Extra-Thymic Physiological T Lineage Progenitor Activity Is Exclusively Confined to Cells Expressing either CD127, CD90, or High Levels of CD117

    Get PDF
    T cell development depends on continuous recruitment of progenitors from bone marrow (BM) to the thymus via peripheral blood. However, both phenotype and functional characteristics of physiological T cell precursors remain ill-defined. Here, we characterized a putative CD135+CD27+ T cell progenitor population, which lacked expression of CD127, CD90, and high levels of CD117 and was therefore termed triple negative precursor (TNP). TNPs were present in both BM and blood and displayed robust T lineage potential, but virtually no myeloid or B lineage potential, in vitro. However, TNPs did not efficiently generate T lineage progeny after intravenous or intrathymic transfer, suggesting that a physiological thymic microenvironment does not optimally support T cell differentiation from TNPs. Thus, we propose that physiological T cell precursors are confined to populations expressing either CD127, CD90, or high levels of CD117 in addition to CD135 and CD27 and that TNPs may have other physiological functions

    A threshold level of NFATc1 activity facilitates thymocyte differentiation and opposes notch-driven leukaemia development.

    Get PDF
    International audienceNFATc1 plays a critical role in double-negative thymocyte survival and differentiation. However, the signals that regulate Nfatc1 expression are incompletely characterized. Here we show a developmental stage-specific differential expression pattern of Nfatc1 driven by the distal (P1) or proximal (P2) promoters in thymocytes. Whereas, preTCR-negative thymocytes exhibit only P2 promoter-derived Nfatc1beta expression, preTCR-positive thymocytes express both Nfatc1beta and P1 promoter-derived Nfatc1alpha transcripts. Inducing NFATc1alpha activity from P1 promoter in preTCR-negative thymocytes, in addition to the NFATc1beta from P2 promoter impairs thymocyte development resulting in severe T-cell lymphopenia. In addition, we show that NFATc1 activity suppresses the B-lineage potential of immature thymocytes, and consolidates their differentiation to T cells. Further, in the pTCR-positive DN3 cells, a threshold level of NFATc1 activity is vital in facilitating T-cell differentiation and to prevent Notch3-induced T-acute lymphoblastic leukaemia. Altogether, our results show NFATc1 activity is crucial in determining the T-cell fate of thymocytes

    The Transcription Factor PU.1 Regulates γδ T Cell Homeostasis

    Get PDF
    T cell development results in the generation of both mature αβ and γδ T cells. While αβ T cells predominate in secondary lymphoid organs, γδ T cells are more abundant in mucosal tissues. PU.1, an Ets family transcription factor, also identified as the spleen focus forming virus proviral integration site-1 (Sfpi1) is essential for early stages of T cell development, but is down regulated during the DN T-cell stage.In this study, we show that in mice specifically lacking PU.1 in T cells using an lck-Cre transgene with a conditional Sfpi1 allele (Sfpi1(lck-/-)) there are increased numbers of γδ T cells in spleen, thymus and in the intestine when compared to wild-type mice. The increase in γδ T cell numbers in PU.1-deficient mice is consistent in γδ T cell subsets identified by TCR variable regions. PU.1-deficient γδ T cells demonstrate greater proliferation in vivo and in vitro.The increase of γδ T cell numbers in Lck-Cre deleter strains, where deletion occurs after PU.1 expression is diminished, as well as the observation that PU.1-deficient γδ T cells have greater proliferative responses than wild type cells, suggests that PU.1 effects are not developmental but rather at the level of homeostasis. Thus, our data shows that PU.1 has a negative influence on γδ T cell expansion

    Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.

    Get PDF
    BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700

    Developmental gene networks: a triathlon on the course to T cell identity

    Full text link

    The Customization of Science: An Introduction to the Debate

    No full text

    Identification of an NK/T cell-restricted progenitor in adult bone marrow contributing to bone marrow- and thymic-dependent NK cells.

    No full text
    Although bone marrow (BM) is the main site of natural killer (NK)-cell development in adult mice, recent studies have identified a distinct thymic-dependent NK pathway, implicating a possible close link between NK- and T-cell development in adult hematopoiesis. To investigate whether a potential NK-/T-lineage restriction of multipotent progenitors might take place already in the BM, we tested the full lineage potentials of NK-cell progenitors in adult BM. Notably, although Lin(-)CD122(+)NK1.1(-)DX5(-) NK-cell progenitors failed to commit to the B and myeloid lineages, they sustained a combined NK- and T-cell potential in vivo and in vitro at the single-cell level. Whereas T-cell development from NK/T progenitors is Notch-dependent, their contribution to thymic and BM NK cells remains Notch-independent. These findings demonstrate the existence of bipotent NK-/T-cell progenitors in adult BM
    corecore