3,613 research outputs found

    P17 Dietary nitrate supplementation increases fractional exhaled nitric oxide : implications for the assessment of airway health in athletes

    Get PDF
    Background: Fractional exhaled nitric oxide (FeNO) is a simple tool that has an established role in the assessment of airway inflammation in athletes. Specifically, FeNO provides information concerning asthma phenotypes, aetiology of respiratory symptoms, response to anti-inflammatory agents, course of disease and adherence to medication. It is recognised that FeNO can be influenced by a variety of external factors (e.g. atopic status, exercise, respiratory tract infection), however, there remains limited research concerning the impact of dietary nitrate ingestion. The primary aim of this study was therefore to evaluate the effect of acute dietary nitrate supplementation on FeNO and resting pulmonary function parameters. Method: The study was conducted as a randomised double-blind placebo-controlled trial. Thirty male endurance trained athletes (age: 28 ± 6 yrs; BMI: 23 ± 2 kg.m-2) free from cardio-respiratory and metabolic disease, and stable at time of study entry (i.e. entirely asymptomatic without recent respiratory tract infection) attended the laboratory on two separate occasions. On arrival to the laboratory, athletes consumed either 140ml nitrate-rich beetroot juice (15.2 mmol nitrate) (NIT) or nitrate-depleted beetroot juice (0 mmol nitrate) (PLA). In accordance with international guidelines all athletes performed resting FeNO and forced spirometry (2.5hrs post ingestion). Airway inflammation was evaluated using established FeNO thresholds: (intermediate [≄25ppb] and high [>50ppb]). Results: All athletes demonstrated normal baseline lung function (FEV1 % predicted >80%). A three-fold rise in resting FeNO was observed following NIT (median [IQR]): 32ppb [37] in comparison to PLA: 10ppb [12] (P0.05). Conclusion: Dietary nitrate ingestion should be considered when employing FeNO for the assessment of airway health in athletes. Our findings have implications concerning the decision to initiate or modify inhaler therapy. Further research is therefore required to determine the impact of chronic dietary nitrate ingestion on pulmonary function and bronchoprovocation testing in athletes with pre-existing asthma and/or exercise-induced bronchoconstriction

    Reaching out to early-career astrobiologists: AbGradE's actions and perspectives

    Get PDF
    Astrobiology Graduates in Europe (AbGradE, pronounced ab-grad-ee) is an association of early-career scientists working in fields relevant to astrobiological research. Conceptualized in 2013, it was initially designed as a mini-conference or workshop dedicated to early-career researchers, providing a friendly environment where early-career minds would be able to present their research without being intimidated by the possibility of facing a more traditional audience, composed mainly of senior scientists. Within the last couple of years, AbGradE became the first point of call for European, but also for an increasing number of non-European, early-career astrobiologists. This article aims to present how AbGradE has evolved over the years (in its structure and in its way of organizing events), how it has adapted with the COVID-19 pandemic, and what future developments are considered

    New form discovery for the analgesics flurbiprofen and sulindac facilitated by polymer-induced heteronucleation

    Full text link
    The selection and discovery of new crystalline forms is a longstanding issue in solid-state chemistry of critical importance because of the effect molecular packing arrangement exerts on materials properties. Polymer-induced heteronucleation has recently been developed as a powerful approach to discover and control the production of crystal modifications based on the insoluble polymer heteronucleant added to the crystallization solution. The selective nucleation and discovery of new crystal forms of the well-studied pharmaceuticals flurbiprofen (FBP) and sulindac (SUL) has been achieved utilizing this approach. For the first time, FBP form III was produced in bulk quantities and its crystal structure was also determined. Furthermore, a novel 3:2 FBP:H 2 O phase was discovered that nucleates selectively from only a few polymers. Crystallization of SUL in the presence of insoluble polymers facilitated the growth of form I single crystals suitable for structure determination. Additionally, a new SUL polymorph (form IV) was discovered by this method. The crystal forms of FBP and SUL are characterized by Raman and FTIR spectroscopies, X-ray diffraction, and differential scanning calorimetry. © 2007 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 96: 2978–2986, 2007Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/57336/1/20954_ftp.pd

    Exciton Condensation and Perfect Coulomb Drag

    Get PDF
    Coulomb drag is a process whereby the repulsive interactions between electrons in spatially separated conductors enable a current flowing in one of the conductors to induce a voltage drop in the other. If the second conductor is part of a closed circuit, a net current will flow in that circuit. The drag current is typically much smaller than the drive current owing to the heavy screening of the Coulomb interaction. There are, however, rare situations in which strong electronic correlations exist between the two conductors. For example, bilayer two-dimensional electron systems can support an exciton condensate consisting of electrons in one layer tightly bound to holes in the other. One thus expects "perfect" drag; a transport current of electrons driven through one layer is accompanied by an equal one of holes in the other. (The electrical currents are therefore opposite in sign.) Here we demonstrate just this effect, taking care to ensure that the electron-hole pairs dominate the transport and that tunneling of charge between the layers is negligible.Comment: 12 pages, 4 figure

    Modeling the scaling properties of human mobility

    Full text link
    While the fat tailed jump size and the waiting time distributions characterizing individual human trajectories strongly suggest the relevance of the continuous time random walk (CTRW) models of human mobility, no one seriously believes that human traces are truly random. Given the importance of human mobility, from epidemic modeling to traffic prediction and urban planning, we need quantitative models that can account for the statistical characteristics of individual human trajectories. Here we use empirical data on human mobility, captured by mobile phone traces, to show that the predictions of the CTRW models are in systematic conflict with the empirical results. We introduce two principles that govern human trajectories, allowing us to build a statistically self-consistent microscopic model for individual human mobility. The model not only accounts for the empirically observed scaling laws but also allows us to analytically predict most of the pertinent scaling exponents

    DNA binding shifts the redox potential of the transcription factor SoxR

    Get PDF
    Electrochemistry measurements on DNA-modified electrodes are used to probe the effects of binding to DNA on the redox potential of SoxR, a transcription factor that contains a [2Fe-2S] cluster and is activated through oxidation. A DNA-bound potential of +200 mV versus NHE (normal hydrogen electrode) is found for SoxR isolated from Escherichia coli and Pseudomonas aeruginosa. This potential value corresponds to a dramatic shift of +490 mV versus values found in the absence of DNA. Using Redmond red as a covalently bound redox reporter affixed above the SoxR binding site, we also see, associated with SoxR binding, an attenuation in the Redmond red signal compared with that for Redmond red attached below the SoxR binding site. This observation is consistent with a SoxR-binding-induced structural distortion in the DNA base stack that inhibits DNA-mediated charge transport to the Redmond red probe. The dramatic shift in potential for DNA-bound SoxR compared with the free form is thus reconciled based on a high-energy conformational change in the SoxR–DNA complex. The substantial positive shift in potential for DNA-bound SoxR furthermore indicates that, in the reducing intracellular environment, DNA-bound SoxR is primarily in the reduced form; the activation of DNA-bound SoxR would then be limited to strong oxidants, making SoxR an effective sensor for oxidative stress. These results more generally underscore the importance of using DNA electrochemistry to determine DNA-bound potentials for redox-sensitive transcription factors because such binding can dramatically affect this key protein property

    Color Differences Highlight Concomitant Polymorphism of Chalcones

    Get PDF
    The meta- and para-nitro isomers of (E)-3â€Č-dimethylamino-nitrochalcone (Gm8m and Gm8p) are shown to exhibit concomitant color polymorphism, with Gm8m appearing as yellow (P2_{1}/c) or orange (P1̅) crystals and Gm8p appearing as red (P2_{1}/n) or black (P2_{1}/c) crystals. Each of the polymorphs was characterized optically via UV–vis spectroscopy, and their thermal behavior was characterized via differential scanning calorimetry and low-temperature powder X-ray diffraction. To assess the effect of molecular configuration and crystal packing on the colors of crystals of the different polymorphs, time dependent density functional theory (ωB97x) calculations were carried out on isolated molecules, dimers, stacks, and small clusters cut from the crystal structures of the four polymorphs. The calculated color comes from several excitations and is affected by conformation and most intermolecular contacts within the crystal, with the color differences between polymorphs mainly being due to the differences in the π–π stacking. The visual differences between these related polymorphic systems make them particularly useful for studying polymorph behavior such as phase transitions and concomitant polymorph growth

    Decreasing intensity of open-ocean convection in the Greenland and Iceland seas

    Get PDF
    The air–sea transfer of heat and fresh water plays a critical role in the global climate system. This is particularly true for the Greenland and Iceland seas, where these fluxes drive ocean convection that contributes to Denmark Strait overflow water, the densest component of the lower limb of the Atlantic Meridional Overturning Circulation (AMOC). Here we show that the wintertime retreat of sea ice in the region, combined with different rates of warming for the atmosphere and sea surface of the Greenland and Iceland seas, has resulted in statistically significant reductions of approximately 20% in the magnitude of the winter air–sea heat fluxes since 1979. We also show that modes of climate variability other than the North Atlantic Oscillation (NAO) are required to fully characterize the regional air–sea interaction. Mixed-layer model simulations imply that further decreases in atmospheric forcing will exceed a threshold for the Greenland Sea whereby convection will become depth limited, reducing the ventilation of mid-depth waters in the Nordic seas. In the Iceland Sea, further reductions have the potential to decrease the supply of the densest overflow waters to the AMOC
    • 

    corecore