4,403 research outputs found

    Mechanisms Linking Physical Activity with Psychiatric Symptoms Across the Lifespan:A Systematic Review

    Get PDF
    Background: Physical activity has been suggested as a protective factor against psychiatric symptoms. While numerous studies have focused on the magnitude of physical activity’s effect on psychiatric symptoms, few have examined the potential mechanisms. Objective: The current review aimed to synthesize scientific evidence of the mechanisms through which physical activity might reduce psychiatric symptoms across the lifespan. Methods: We included articles that were published before March 2022 from five electronic databases (MEDLINE, Web of Science, PsycINFO, Embase, and Cochrane). A qualitative synthesis of studies was conducted. The risk of bias assessment was performed using The Joanna Briggs Institute Critical Appraisal Tool for Systematic Reviews. Studies were included if they explored the possible mechanisms through which physical activity influences psychiatric symptoms (i.e., internalizing and externalizing symptoms) across the lifespan. Results: A total of 22 articles were included (three randomized controlled trials, four non-randomized controlled trials, three prospective longitudinal studies, and 12 cross-sectional studies). Overall, most of the studies focused on children, adolescents, and young adults. Our findings showed that self-esteem, self-concept, and self-efficacy were the only consistent paths through which physical activity influences psychiatric symptoms (specifically depressive and anxiety symptoms) across the lifespan. There were insufficient studies to determine the role of neurobiological mechanisms. Conclusions: Overall, future physical activity interventions with the purpose of improving mental health should consider these mechanisms (self-esteem, self-concept, self-efficacy) to develop more effective interventions. Clinical Trial Registration: The protocol of this study was registered in the PROSPERO database (registration number CRD42021239440) and published in April 2022.</p

    Mechanisms linking physical activity with psychiatric symptoms across the lifespan:A protocol for a systematic review

    Get PDF
    INTRODUCTION: Persistent psychiatric symptomatology during childhood and adolescence predicts vulnerability to experience mental illness in adulthood. Physical activity is well-known to provide mental health benefits across the lifespan. However, the underlying mechanisms linking physical activity and psychiatric symptoms remain underexplored. In this context, we aim to systematically synthesise evidence focused on the mechanisms through which physical activity might reduce psychiatric symptoms across all ages. METHODS AND ANALYSIS: With the aid of a biomedical information specialist, we will develop a systematic search strategy based on the predetermined research question in the following electronic databases: MEDLINE, Embase, Web of Science, Cochrane and PsycINFO. Two independent reviewers will screen and select studies, extract data and assess the risk of bias. In case of inability to reach a consensus, a third person will be consulted. We will not apply any language restriction, and we will perform a qualitative synthesis of our findings as we anticipate that studies are scarce and heterogeneous. ETHICS AND DISSEMINATION: Only data that have already been published will be included. Then, ethical approval is not required. Findings will be published in a peer-reviewed journal and presented at conferences. Additionally, we will communicate our findings to healthcare providers and other sections of society (eg, through regular channels, including social media). PROSPERO REGISTRATION NUMBER: CRD42021239440

    Age, gender and disability predict future disability in older people: the Rotterdam Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To develop a prediction model that predicts disability in community-dwelling older people. Insight in the predictors of disability is needed to target preventive strategies for people at increased risk.</p> <p>Methods</p> <p>Data were obtained from the Rotterdam Study, including subjects of 55 years and over. Subjects who had complete data for sociodemographic factors, life style variables, health conditions, disability status at baseline and complete data for disability at follow-up were included in the analysis. Disability was expressed as a Disability Index (DI) measured with the Health Assessment Questionnaire.</p> <p>We used a multivariable polytomous logistic regression to derive a basic prediction model and an extended prediction model. Finally we developed readily applicable score charts for the calculation of outcome probabilities.</p> <p>Results</p> <p>Of the 5027 subjects included, 49% had no disability, 18% had mild disability, 16% had severe disability and 18% had deceased at follow-up after six years. The strongest predictors were age and prior disability. The contribution of other predictors was relatively small. The discriminative ability of the basic model was high; the extended model did not enhance predictive ability.</p> <p>Conclusion</p> <p>As prior disability status predicts future disability status, interventive strategies should be aimed at preventing disability in the first place.</p

    An RBP4 promoter polymorphism increases risk of type 2 diabetes

    Get PDF
    Aims/hypothesis: Retinol-binding protein 4 (RBP4), originally known for retinol transport, was recently identified as an adipokine affecting insulin resistance. The RBP4 -803GA promoter polymorphism influences binding of hepatic nuclear factor 1Îą and is associated with type 2 diabetes in case-control studies. We hypothesised that the RBP4 -803GA polymorphism increases type 2 diabetes risk at a population-based level. In addition, information on retinol intake and plasma vitamin A levels enabled us to explore the possible underlying mechanism. Methods: In the Rotterdam Study, a prospective, population-based, follow-up study, the -803GA polymorphism was genotyped. In Cox proportional hazards models, associations of the -803GA polymorphism and retinol intake with type 2 diabetes risk were examined. Moreover, the interaction of the polymorphism with retinol intake on type 2 diabetes risk was assessed. In a subgroup of participants the association of the polymorphism and vitamin A plasma levels was investigated. Results: Homozygous carriers of the -803A allele had increased risk of type 2 diabetes (HR 1.83; 95% CI 1.26-2.66). Retinol intake was not associated with type 2 diabetes risk and showed no interaction with the RBP4 -803GA polymorphism. Furthermore, there was no significant association of the polymorphism with plasma vitamin A levels. Conclusions/interpretation: Our results provide evidence that homozygosity for the RBP4 -803A allele is associated with increased risk of type 2 diabetes in the Rotterdam population. This relationship was not clearly explained by retinol intake and vitamin A plasma levels. Therefore, we cannot differentiate between a retinol-dependent or -independent mechanism of this RBP4 variant

    The Rotterdam Scan Study: design and update up to 2012

    Get PDF
    Neuroimaging plays an important role in etiologic research on neurological diseases in the elderly. The Rotterdam Scan Study was initiated as part of the ongoing Rotterdam Study with the aim to unravel causes of neurological disease by performing neuroimaging in a population-based longitudinal setting. In 1995 and 1999 random subsets of the Rotterdam Study underwent neuroimaging, whereas from 2005 onwards MRI has been implemented into the core protocol of the Rotterdam Study. In this paper, we discuss the background and rationale of the Rotterdam Scan Study. We also describe the imaging protocol and post-processing techniques, and highlight the main findings to date. Finally, we make recommendations for future research, which will also be the main focus of investigation in the Rotterdam Scan Study

    Fission Hindrance in Hot Nuclei

    Full text link
    The role of dynamics in fission has attracted much interest since the discovery of this process over fifty years ago. However, the study of the dynamical aspects of fission was for many years hampered by the lack of suitable experimental observables against which theoretical calculations could be tested. For example, it was found that the total kinetic energy release in fission can be described equally well by very different dissipation mechanisms, namely the wall formula, that is based on the collisions of the nucleons with the moving wall of the system, as well as a bulk viscosity of the nuclear matter. Although early theoretical work suggested that the fission process may be described as a diffusion process over the fission barrier, this was largely forgotten because of the success of a purely statistical model which instead of enumerating the ultimate final states of the process argues that the fission rate is determined at the {open_quote}transition state{close_quote} as the system traverses the fission saddle point. It was therefore significant when Gavron showed that the transition state model was unable to describe the number of neutrons emitted prior to scission at high excitation energy in reactions of {sup 16}O+{sup 142}Nd. Subsequent experimental work using different methods to measure the fission dissipation/viscosity has confirmed these initial observations. It was therefore very surprising when Moretto in recent publications concluded that their analysis of fission excitation functions obtained with a and {alpha} and {sup 3}He induced projectiles was perfectly in accord with the transition state model and left no room for fission viscosity. In this paper we`ll show that Moretto`s analysis is flawed by assuming first chance fission only (in direct contradiction to the experimental observation of pre-scission neutron emission in heavy-ion induced fission), and reveal why the systematics presented by Moretto looked so convincing despite these flaws

    Meta-Analysis of Genome-Wide Scans for Human Adult Stature Identifies Novel Loci and Associations with Measures of Skeletal Frame Size

    Get PDF
    Recent genome-wide (GW) scans have identified several independent loci affecting human stature, but their contribution through the different skeletal components of height is still poorly understood. We carried out a genome-wide scan in 12,611 participants, followed by replication in an additional 7,187 individuals, and identified 17 genomic regions with GW-significant association with height. Of these, two are entirely novel (rs11809207 in CATSPER4, combined P-value = 6.1×10−8 and rs910316 in TMED10, P-value = 1.4×10−7) and two had previously been described with weak statistical support (rs10472828 in NPR3, P-value = 3×10−7 and rs849141 in JAZF1, P-value = 3.2×10−11). One locus (rs1182188 at GNA12) identifies the first height eQTL. We also assessed the contribution of height loci to the upper- (trunk) and lower-body (hip axis and femur) skeletal components of height. We find evidence for several loci associated with trunk length (including rs6570507 in GPR126, P-value = 4×10−5 and rs6817306 in LCORL, P-value = 4×10−4), hip axis length (including rs6830062 at LCORL, P-value = 4.8×10−4 and rs4911494 at UQCC, P-value = 1.9×10−4), and femur length (including rs710841 at PRKG2, P-value = 2.4×10−5 and rs10946808 at HIST1H1D, P-value = 6.4×10−6). Finally, we used conditional analyses to explore a possible differential contribution of the height loci to these different skeletal size measurements. In addition to validating four novel loci controlling adult stature, our study represents the first effort to assess the contribution of genetic loci to three skeletal components of height. Further statistical tests in larger numbers of individuals will be required to verify if the height loci affect height preferentially through these subcomponents of height

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore