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Abstract 17 

 The analysis of time series data is common in nutrition and metabolism research for quantifying the 18 

physiological responses to various stimuli. The reduction of many data from a time series into a summary 19 

statistic(s) can help quantify and communicate the overall response in a more straightforward way and in 20 

line with a specific hypothesis. Nevertheless, many summary statistics have been selected by various 21 

researchers, and some approaches are still complex. The time-intensive nature of such calculations can be a 22 

burden for especially large datasets and may, therefore, introduce computational errors, which are difficult 23 

to recognize and correct. In this short commentary, we introduce a newly-developed tool that automates 24 

many of the processes commonly used by researchers for discrete-time series analysis, with particular 25 

emphasis on how the tool may be implemented within nutrition and exercise science research. 26 

Keywords 27 

Incremental area under the curve; time series data; temporal response; post-prandial. 28 

  29 
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Introduction 30 

It is common practice within the field of nutrition and metabolism research to analyses serial 31 

measurements made over time to determine the temporal pattern of a given response. Typical examples include 32 

metabolic control following nutritional challenges (i.e. oral glucose or fat tolerance tests; Berthiaume & Zinker, 33 

2002), monitoring of stable isotope enrichment in various body pools and associated substrate kinetics 34 

(Garlick et al., 1989), and markers of physiological response to exercise such as heart rate and oxygen 35 

consumption (Gore & Withers, 1990).  36 

 37 

Such analyses have become increasingly complex and necessary in recent years both due to technical 38 

advancements in measurement tools and due to our growing understanding of the interactions between various 39 

nutritional stimuli. Regarding the former, it is undoubtedly a mark of progress that modern technologies have 40 

enabled many measurements to be made with higher sampling frequency and thus with greater sensitivity to 41 

rapidly fluctuating responses over time. However, such high-resolution temporal data also bring certain 42 

analytical challenges (such as the control of type I and II error rates due to the number of multiple comparisons), 43 

which can complicate the elucidation and communication of clear conclusions.  44 

 45 

While early studies in many areas of nutrition science may have examined simple comparisons of 46 

treatments (e.g. 20 g carbohydrate versus water/placebo at a single time-point), the state of current 47 

understanding in many areas is now such that further progress requires more sophisticated factorial designs 48 

with multiple levels within each factor, to examine longer term effects and/or interactions between ingredients 49 

that work in concert (e.g. pre-post response to carbohydrate versus carbohydrate-protein versus water/placebo, 50 

etc.). This further evolution is necessary to detect more subtle and/or context specific effects but, again, 51 

introduces additional complicating factors, such as the reduced statistical power associated with quantifying 52 

interactive effects between all the additional independent variables (e.g. a 3-way ANOVA: 3 conditions*pre-53 

post*multiple time-points), along with the complications arising when the data violate the assumption of 54 

sphericity (Huck & Cormier, 1995).  55 

 56 
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In all the above cases, condensing the time series data down to a summary statistic can simplify the 57 

analysis by removing the temporal element. In the above example, the 3-way ANOVA with multiple 58 

comparisons at many time-points becomes a 2-way condition*time (pre, post) analysis. Beyond these 59 

advantages in relation to statistical analyses, this approach of using summary statistics facilitates the clear 60 

communication of the main findings both in simple terms for the general public and with complete reporting 61 

of individual responses for the scientific community. For example, graphical presentation of time series data 62 

on a line graph does not readily allow for individual or paired responses to be plotted, whereas this consistency 63 

of observed responses is easily presented as a histogram showing individual summary statistics (Figure 1). 64 

Measures of central tendency certainly have a place to illustrate group effects on graphs and figures but 65 

individual responses to each experimental condition should still be presented, particularly when sample sizes 66 

are relatively small, to facilitate critical evaluation of data (Weissgerber et al., 2015). 67 

 68 

Despite the above benefits of summary statistics and the common use of time series experimental 69 

designs within the scientific literature, the general approaches and precise methods of analysis vary 70 

considerably between laboratories and experiments (Wolever, 2004; Matthan et al., 2016). In addition, 71 

calculations requiring multiple stages and various equations are time consuming and susceptible to human 72 

error. This short commentary introduces a downloadable spreadsheet, the Time Series Response Analyser 73 

(TSRA), designed specifically to automate and standardize many common processes, thus minimizing both 74 

the time spent analyzing data and the probability of computational errors. The TSRA is freely available under 75 

the ‘Author Guidelines’ section of the IJSNEM website 76 

(https://journals.humankinetics.com/view/journals/ijsnem/ijsnem-overview.xml/). This commentary will 77 

highlight a range of time series analysis procedures that can be computed with the tool, and briefly discuss 78 

their utility in the context of exercise and nutrition research. 79 

 80 

Area under the curve (AUC) 81 

The methodological approach to an AUC calculation is particularly variable (Wolever, 2004) and 82 

manual calculation is highly susceptible to human error. The AUC can be calculated using denominations of 83 

https://journals.humankinetics.com/view/journals/ijsnem/ijsnem-overview.xml/
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the trapezoidal rule, where time series data are integrated to form a single value characterizing the overall 84 

response, representative of an area (e.g. blood glucose concentrations measured in mmol·l-1 at serial time-85 

points over a standard oral glucose tolerance test are expressed as the product of concentration and time; 86 

mmol·l-1·120 min). Figure 2 illustrates a range of AUC options, each of which is described in this section. 87 

 88 

Total AUC is the most straightforward approach, in which an area is calculated relative to the line 89 

representing an ordinate of zero (Matthews et al., 1990). This practice can provide a valid estimate of the 90 

overall exposure to the parameter of interest (i.e. including the value measured at baseline – e.g. if contrasting 91 

24 h plasma testosterone concentrations between males and females). However, by the same reasoning, total 92 

AUC can be limited by the variation commonly observed at baseline, despite the best efforts of researchers 93 

and participants to replicate experimental conditions (Altman, 1985). In cases where baseline differences are 94 

apparent and/or it is the response to a stimulus that is of primary interest, the incremental AUC relative to 95 

another nominal value (generally baseline) may be a more appropriate alternative (Wolever & Jenkins, 1986). 96 

 97 

Naturally, certain exposures can cause the dependent variable to drop below the value to which 98 

incremental AUC is being calculated. For example, the postprandial response to a standard oral glucose 99 

tolerance test is typically measured across two hours, as the blood glucose concentrations of healthy 100 

participants tend to return to baseline within this time period (Babraj et al., 2009). Therefore, the blood glucose 101 

concentrations of highly insulin sensitive individuals could feasibly fall below the value measured at baseline, 102 

which for an incremental AUC calculation provides multiple options for analysis. In this instance some 103 

researchers may choose to terminate the calculation at the time-point at which the measured value falls below 104 

the incremental reference value (Ha et al., 1992), while others will include any subsequent positive segments 105 

if the value returns above baseline. Within this latter approach, researchers could consider negative areas to 106 

equal zero (Hofman et al., 2004), or subtract them from the calculation (Gannon et al., 1989). It should be 107 

noted that, while the subtraction of negative areas follows the principle of mathematical integration, this 108 

process is rarely justified but may occasionally be applied in error. In theory, unless this subtractive process 109 

is rationalized, values representing AUC should always be positive. Moreover, some of the incremental AUC 110 
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variations can be applied to the nadir rather than the baseline value (Vorster et al., 1990), which may be of 111 

interest when variables tend to decrease in response to a stimulus, such as postprandial concentrations of non-112 

esterified fatty acids (Bickerton et al., 2007), or the ‘hunger hormone’ ghrelin (le Roux et al., 2005). 113 

Alternatively, the AUC could be calculated relative to a pre-determined absolute value or clinical reference 114 

threshold that is indicative of a certain outcome (Monnier et al., 2003). It is beyond the scope of this 115 

commentary to discuss each of these methodologies in any greater detail as they ultimately depend on the 116 

context. Suffice to say, whilst some AUC calculations are relatively simple, others can become mathematically 117 

complex, particularly those that consider the intersection of certain thresholds. In these instances, the 118 

probability of conceptual and computational errors with manual calculations are increased, and the clarity with 119 

which the AUC values have been derived is reduced. 120 

The TSRA generates AUC results from raw data consistently and instantaneously with a minimal risk 121 

of human error. The tool computes AUC for all treatments simultaneously and handles each of the 122 

aforementioned methodologies under the input of the user. In addition, the spreadsheet provides transparency 123 

by explicitly quantifying the segmental areas that combine to produce the chosen AUC (which can be valuable 124 

information in itself to retain some reference to the shape of the response curve despite reducing the individual 125 

time points into areas). 126 

 127 

Alternative summary statistics in discrete-time series analysis 128 

 129 

In addition to the AUC calculations computed by the TSRA, the peak and time-to-peak values for each trial 130 

are also included in the output. Errors and inconsistencies in the identification of these summary statistics are 131 

considerably less likely to occur when compared to AUC, as their definitions are more precise and their 132 

calculations are more straightforward. They can however be particularly informative within certain contexts, 133 

and they are therefore briefly discussed in this section. Table 1 contains definitions, benefits, limitations and 134 

examples for each summary statistic included in the TSRA output. 135 

 136 

Peak 137 
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Of the various alternative summary values that can describe a time series response, the absolute peak 138 

is an easily identifiable, interpretable and physiologically meaningful statistic. It is simply the highest value 139 

attained in the dependent variable across the time window through which it was measured. Therefore, rather 140 

than representing the totality of a response, as is the case with AUC, this value indicates the maximum 141 

measured value of the relevant outcome. Critically, this statistic should be determined separately for every 142 

distinct trial and individual, accepting that the peak value may occur at different time-points for different 143 

response curves. Thus, the contrast of maximum measured values cannot be ascertained from visual inspection 144 

of the data when plotted as a time series (i.e. it is possible that no single participant’s maximum value occurred 145 

at the apex of the group mean line). The utility of a peak value during the response to a physiological challenge 146 

has been demonstrated in the diagnoses of various medical conditions such as growth hormone deficiency 147 

(Koppeschaar et al., 2004) and constitutional delay of puberty (Grinspon et al., 2010), and is practical in the 148 

application of diagnostic research due to the absence of any complex calculations. Despite the simplicity of 149 

this summary statistic representing a clear benefit of this approach, contextual limitations do exist. For 150 

example, measurement error is likely to be relatively high when a single data-point is used to summarize an 151 

overall response, and the accuracy is heavily influenced by the true location of a peak value relative to the 152 

frequency with which samples are collected (De Nicolao et al., 2000). The accuracy of this value may therefore 153 

be questioned when sampling frequency is insufficient and/or the random within-subjects variability or “noise” 154 

in the measurement of the dependent variable is high. 155 

 156 

Time-to-peak 157 

Alongside the reporting of the peak value, the time at which this peak occurs is typically reported and 158 

interpreted by authors. This “time-to-peak” summary statistic indicates the gradient of the response to the 159 

stimulus, demonstrating onset alongside magnitude. For example, both the AUC and peak values may be 160 

similar between treatments, yet the time-to-peak may still reveal important changes in the shape of the 161 

response curve (Figure 3). This may be useful when assessing the bioavailability of a nutrient or supplement, 162 

as it can indicate the net rate of appearance relative to an alternative condition (Matthews et al., 1990). For 163 

example, Vinson and Bose (1988) included a comparison of a time-to-peak summary statistic when 164 
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investigating ascorbic acid bioavailability, in response to the ingestion of equivalent doses of synthetic and 165 

naturally-occurring vitamin C. Importantly, unless a substance is not endogenously produced and maintains 166 

constant disappearance rates, or in the absence of isotopic tracer methodologies, this method provides fairly 167 

limited insight into substrate kinetics. However, the utility of the time-to-peak summary statistic as a 168 

diagnostic tool has been demonstrated in the context of insulin sensitivity. Specifically, risk-prediction models 169 

for prediabetes were shown to be reliably and independently enhanced by the addition of time-to-peak blood 170 

glucose concentration during an oral glucose tolerance test (Chung et al., 2017). Moreover, the use of this 171 

statistic in this context theoretically signified the early-phase insulin response, which may have provided 172 

additional mechanistic insight beyond alternative summary statistics (Cree-Green et al., 2018). 173 

 174 

A further application of time-to-peak has been to inform methodologies that seek to identify certain 175 

responses, such as the duration and sampling frequency of an oral fat tolerance test necessary to provide a 176 

holistic metabolic profile (Tentolouris et al., 2017). As with all considerations outlined in this paper, the 177 

precise calculations and reported outcomes should remain specific to the research question and will therefore 178 

depend heavily on the context in which time series data are being analyzed. Moreover, where the magnitude 179 

and/or timing of the peak is of interest, additional measurements should be taken throughout the time window 180 

within which it is expected to occur. 181 

 182 

Further considerations 183 

 184 

Variability statistics 185 

 Another avenue for investigation of time series data is variability. For example, measures of variability 186 

in the continuous monitoring of glucose concentrations can be a useful parameter to describe glycemic control 187 

(Wijsman et al., 2013). A greater variability in glucose concentration could indicate a reduced ability to 188 

appropriately respond to nutritional stimuli, reflecting impaired homeostatic regulation and in the context of 189 

glucose metabolism, an increased risk of type-2 diabetes (Ceriello et al., 2008). Within this example, a variety 190 

of methods are available to characterize glycemic variability including overall standard deviation, standard 191 
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deviation across fixed time windows (for variability changes across time), range, interquartile range, 192 

percentage coefficient of variation and time spent above/below certain thresholds (Akintola et al., 2015). 193 

Rodbard (2009) discussed these methods from a statistical standpoint and provided further context-specific 194 

options for alternative perspectives on time series data. Another context in which the variability in a measured 195 

marker is of interest within a certain time window is chronobiology. Whilst this is a particularly interesting 196 

avenue for time series data analysis in nutrition research, it is beyond the scope of the TSRA primarily because 197 

of the circular nature of chronobiological data measured over several biological rhythm periods. The 198 

intricacies of biological rhythm descriptions and summaries are discussed from a statistical perspective 199 

elsewhere (Landler, Ruxton & Malkemper, 2018). The appropriate application of variability statistics to time 200 

series data ultimately depends on the specific research question being addressed, and the information that each 201 

option can provide. Further key considerations may be the normality of data distribution, which can influence 202 

the appropriateness of certain measures of central tendency and variability, and the associated sensitivity of 203 

these approaches to more extreme values. The TSRA computes both the standard deviation and the coefficient 204 

of variation for each individual trial, and provides these simple variability statistics within the standard output. 205 

Alternative variability statistics are not calculated by the tool, as the provision of a finite number of complex 206 

options may influence the analytical approach taken by the user. 207 

 208 

Missing values 209 

Missing values may be the result of missed or inappropriately handled samples, errors in a 210 

measurement technique or mistakes during data entry. These can be particularly common in time series data, 211 

as the probability of an error is increased when a large number of samples are collected (especially where 212 

humans and/or technology are involved!). Missing data pose a problem for the analysis of time series data as 213 

the intended temporal resolution within a given trial is transiently reduced. Key considerations include the 214 

amount, the pattern and the cause of missing data, each of which may influence the methods by which they 215 

are resolved. Regarding the cause, data could be missing completely at random (MCAR), where missing values 216 

are unrelated to any observed values and are therefore a totally random subset of the data. Alternatively, if 217 

missing values are related to observed data, or dependent on the unobserved values themselves, they are 218 
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considered to be missing at random (MAR) or missing not at random (MNAR), respectively (Little & Rubin, 219 

1987). Where data are MCAR, techniques typically aim to preserve the observed underlying parameters of 220 

the variables for which data are imputed (e.g. means, variances, covariances etc.). However, the systematic 221 

nature of data MAR and MNAR suggest potential bias may have been introduced in these parameter estimates 222 

due to the existence of the missing values. For example, if the accuracy of a measurement technique utilized 223 

during time series data collection is confounded outside a certain range, especially high and/or low values are 224 

likely to be missing more frequently, eliciting an unrepresentatively skewed distribution (an example of 225 

MNAR). Indeed, Bell, King and Fairclough (2014) demonstrated a greater level of bias in time series summary 226 

measures with data MAR or MNAR, compared with MCAR, using a simulated randomized controlled trial. 227 

Researchers are therefore recommended to identify the cause of missing time series data and handle this issue 228 

accordingly. 229 

 230 

Individual time-points for continuous time series data are inherently not mutually exclusive, so it seems 231 

appropriate to estimate missing values using known data for a given trial. The precise method by which this 232 

process has been conducted may however be ambiguous. As AUC calculations follow the trapezoidal rule, 233 

this summary statistic would typically use simplistic linear interpolation to estimate missing values. Briefly, 234 

existing points either side of missing values are connected with a straight line, and these are imputed as a 235 

function of time using the resulting linear equation (Figure 4A). It should be noted that this approach has 236 

limitations, particularly if missing values occur where the true response is likely to have reached a peak, as a 237 

linear connection would undercut this value (Figure 4B). An alternative approach may be to fit a polynomial 238 

curve of appropriate order to the known data and impute missing values using the resulting polynomial 239 

equation. In the context of time series data, imputing missing values using alternative trials for the same 240 

treatment or the same individual are not recommended, as these approaches are likely confounded by inter-241 

individual variability and the effect of treatments, respectively. For a comprehensive review of missing value 242 

handling in the context of randomized controlled trials in nutrition, the reader is directed to Li and Stuart 243 

(2019). 244 

 245 



11 
 

Outliers 246 

 Another contentious topic in the initial screening of data is the identification and subsequent handling 247 

of outliers. Outlier identification typically uses statistical approaches, such as Tabachnick and Fidell (2007) 248 

defining values ≥ 3.29 standard deviations above or below the mean as outliers (the probability of obtaining a 249 

true sample this extreme is 0.1%). However, similar to missing values, continuous time series data are unique 250 

in that an outlier may be identifiable by its magnitude in relation to the rest of the response curve. This 251 

viewpoint may however lead to the exclusion of certain values simply because they don’t follow a relatively 252 

smooth pattern which, as measurement error is likely to exist in all samples, may be too subjective an approach. 253 

de Souza and colleagues (2015) advocate for data analyses to be conducted with and without suspected outliers, 254 

to assess whether the main analysis is robust to these extreme cases. Comprehensive reporting of this 255 

sensitivity analysis may then be the most transparent approach to the handling of outliers. 256 

 257 

Conclusion 258 

The TSRA has been specifically designed to speed up and standardize the calculation of summary 259 

statistics from time series data. Therefore, this tool can be used to validate calculations, and can then be cited 260 

in publications to provide transparency and to verify that the reported summary statistics are free from error. 261 

In turn, readers can have greater confidence in the reported conclusions. 262 

 263 

 264 

 265 

 266 

 267 

 268 

 269 

 270 

 271 

 272 
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Table 1. Summary of the various summary statistics available in the output of the TSRA. 

Summary 

Statistic 

Definition/Inference Advantages Limitations Examples in 

Nutrition and 

Exercise Science 

     

Area 

under the 

curve 

A value 

representative of the 

magnitude of the 

total response to a 

stimulus across a 

given time period, 

calculated using the 

trapezoidal rule. 

A single value that 

takes into account 

the two-

dimensionality of 

time-series data (e.g. 

both the magnitude 

and the duration of 

the response are 

accounted for) 

Inconsistent definitions 

throughout the literature 

Mathematical 

complexity increases 

probability of 

human/computational 

error 

Blood glucose and 

insulin 

concentration 

responses to an 

oral glucose 

tolerance test 

Appetite hormone 

responses to 

certain meals 

     

Peak The maximum 

measured value 

attained in response 

to the stimulus. 

Simple identification 

of the highest 

measured value 

Clearly indicative of 

the maximum 

instantaneous 

exposure to the 

stimulus 

Validity dependent on 

measurement frequency 

relative to true peak, 

and error associated 

with the measurement 

technique 

 

Diagnosis of 

diabetes during an 

oral glucose 

tolerance test 

Exogenous 

glucose oxidation 

rates during 

exercise, when 

comparing 

carbohydrate-

based sports 

drinks 
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Time to 

Peak 

The time taken to 

reach the maximum 

measured value. The 

onset of a given 

exposure. 

Simple identification 

of the time at which 

the highest measured 

value was sampled 

May provide insight 

into the early-phase 

response to a 

stimulus 

Validity dependent on 

measurement frequency 

relative to true peak, 

and error associated 

with the measurement 

technique 

Mechanistic inference 

may be confounded by 

contributing rates of 

appearance and 

disappearance 

Early-phase 

insulin response to 

an oral glucose 

tolerance test 

Oxygen uptake 

kinetics at the 

onset of steady-

state exercise 

Enhancing post-

exercise glycogen 

resynthesis rates 

     

Minimum The minimum value 

attained in response 

to a stimulus. 

Simple identification 

of the lowest 

measured value 

Validity dependent on 

measurement frequency 

relative to true nadir, 

and error associated 

with the measurement 

technique 

Analysis of 

variables that are 

known to decrease 

in response to a 

stimulus, such as 

plasma non-

esterified fatty 

acid or glucagon-

like peptide-1 

responses to 

carbohydrate 

ingestion 

     

Variability 

Statistics 

The degree to which 

a measured marker 

Calculations can be 

relatively 

straightforward (e.g. 

Wide range of 

variability statistics 

available 

Glycemic 

variability with 

continuous 
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varies throughout a 

given period of time. 

standard deviation, 

coefficient of 

variation etc.) 

Provides insight into 

holistic homeostatic 

control mechanisms 

Susceptible to 

confounding by the 

existence of outliers 

glucose 

monitoring data 

Exercise intensity 

variability during 

endurance events 

(e.g. heart rate or 

perceived exertion 

during a cycling 

road race) 

 379 

 380 

 381 

 382 

 383 

 384 

 385 

 386 

 387 

 388 

 389 

 390 

 391 

 392 

 393 

 394 

 395 

 396 
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Figure Legends 397 

 398 

Figure 1. 90-minute blood glucose concentration response to milkshake ingestion under two conditions 399 

(breakfast-rest vs. breakfast-exercise). Data are presented as individual measured responses across time (A), 400 

and using the incremental area under the curve (AUC) summary statistic displayed as mean ± 95% confidence 401 

intervals with individual measured responses (B). Real experimental data for nine participants extracted from 402 

Gonzalez et al. (2013). 403 

 404 

Figure 2. Illustrations of the range of area under the curve definitions used throughout the literature. See text 405 

for descriptions and examples for each. 406 

 407 

Figure 3. Hypothetical illustration of an individual measured response to a stimulus across time. The 408 

alternative measured responses on each panel demonstrate when area under the curve, peak and time-to-peak 409 

summary statistics all provide different inferences, requiring cautious and contextual interpretation 410 

 411 

Figure 4. Simple representation of linear interpolation to impute missing data (A), and a hypothetical time 412 

series response demonstrating a key limitation of linear interpolation (B). 413 


