1,522 research outputs found

    Ultraschall und Arthritis

    Get PDF
    Zusammenfassung: Die Arthrosonographie ist ein etabliertes und validiertes diagnostisches Verfahren in der Rheumatologie. Durch ihren hohen Weichteilkontrast ist die Sonographie in der Lage, Weichteilveränderungen wie z.B. Synovialisveränderungen zu detektieren. Knorpel- oder Knochenveränderungen im Rahmen einer rheumatoiden Arthritis (RA), einer Spondyloarthritis oder einer Kristallarthritis können teilweise nur sonographisch oder in vielen Fällen zu einem früheren Zeitpunkt als mit der konventionellen Bildgebung erfasst werden. Die Aktivität entzündlicher Veränderungen kann mit Hilfe der Doppler- und Power-Dopplersonographie gut dargestellt werden. In der Früharthritisdiagnostik gewinnt die Sonographie zunehmend an Bedeutung, insbesondere bei undifferenzierter Arthritis und bei unauffälligem Röntgenbefund. Neben der Diagnostik der Früharthritis und dem Therapiemonitoring einer RA erlaubt die Sonographie die Darstellung pathognomonischer Veränderungen bei seronegativen Spondyloarthritiden und Kristallablagerungserkrankungen wie Gicht, Chondrokalzinose und Apatitose. Sonographiegesteuerte diagnostische und therapeutische Interventionen zeichnen sich durch eine extrem hohe Treffsicherheit und Verbesserung der klinischen Wirksamkeit verglichen mit ungesteuerten Verfahren aus. Zusammenfassend nimmt die Sonographie zunehmend einen zentralen Stellenwert ein in der Abklärung und Behandlungssteuerung bei entzündlichen Gelenkerkrankunge

    Nucleon Generalized Parton Distributions and Holographic Models

    Get PDF
    Using ideas from Light Front Holography, we discuss the calculation of the nucleon helicity-independent generalized parton distributions of quarks in the zero skewness case.Comment: Prepared for LIGHTCONE 2011, 23 - 27 May, 2011, Dalla

    Neutralization of B-Cell Activating Factor (BAFF) by Belimumab Reinforces Small Molecule Inhibitor Treatment in Chronic Lymphocytic Leukemia.

    Get PDF
    The introduction of idelalisib, ibrutinib and venetoclax for treatment of chronic lymphocytic leukemia (CLL) has greatly improved long term survival of patients. However, many patients do not achieve complete remission and suffer from development of resistance upon treatment with these small molecule inhibitors. Here we report that the TNF family member B-cell activating factor (BAFF) mediates resistance of CLL cells to idelalisib, ibrutinib and venetoclax by sustaining survival and preventing apoptosis of the malignant B cells as revealed by analysis of cellular ATP levels and mitochondrial membrane integrity as well as caspase activation, respectively. As BAFF also plays a prominent role in autoimmune diseases, the BAFF-neutralizing antibody belimumab was developed and approved for treatment of systemic lupus erythematosus (SLE). When we employed belimumab in the context of CLL treatment with idelalisib, ibrutinib and venetoclax, BAFF neutralization was found to significantly increase the sensitivity of the leukemic cells to all three small molecule inhibitors. Notably, BAFF neutralization proved to be beneficial independently of clinical stage according to Binet and Rai or IgVH mutational status. Our results identify drug repurposing of belimumab for neutralization of BAFF to complement small molecule inhibitor treatment as a promising therapeutic approach in CLL that is presently undergoing clinical evaluation

    The lives of FR I radio galaxies

    Full text link
    After a brief introduction to the morphological properties of FRI radio sources, we discuss the possibility that FRI jets are relativistic at their bases and decelerate quickly to non-relativistic velocities. From two-frequency data we determine spectral index distributions and consequently the ages of FRI sources. We show that in the large majority of cases synchrotron theory provides unambiguous and plausible answers; in a few objects re-acceleration of electrons may be needed. The derived ages are of the order 10^7-10^8 years, 2-4 times larger than the ages inferred from dynamical arguments and a factor 5-10 larger than the ages of FRII sources. The linear sizes of FRI and FRII sources make it unlikely that many FRII's evolve into FRI's. A brief discussion is given of the possibility that radio sources go through different cycles of activity.Comment: 19 pages, including 13 figures, to appear in `Life Cycles of Radio Galaxies', ed. J. Biretta et al., New Astronomy Review

    Fluorescently labeled bacteria provide insight on post-mortem microbial transmigration

    Get PDF
    AbstractMicrobially mediated mechanisms of human decomposition begin immediately after death, and are a driving force for the conversion of a once living organism to a resource of energy and nutrients. Little is known about post-mortem microbiology in cadavers, particularly the community structure of microflora residing within the cadaver and the dynamics of these communities during decomposition. Recent work suggests these bacterial communities undergo taxa turnover and shifts in community composition throughout the post-mortem interval. In this paper we describe how the microbiome of a living host changes and transmigrates within the body after death thus linking the microbiome of a living individual to post-mortem microbiome changes. These differences in the human post-mortem from the ante-mortem microbiome have demonstrated promise as evidence in death investigations. We investigated the post-mortem structure and function dynamics of Staphylococcus aureus and Clostridium perfringens after intranasal inoculation in the animal model Mus musculus L. (mouse) to identify how transmigration of bacterial species can potentially aid in post-mortem interval estimations. S. aureus was tracked using in vivo and in vitro imaging to determine colonization routes associated with different physiological events of host decomposition, while C. perfringens was tracked using culture-based techniques. Samples were collected at discrete time intervals associated with various physiological events and host decomposition beginning at 1h and ending at 60 days post-mortem. Results suggest that S. aureus reaches its highest concentration at 5–7 days post-mortem then begins to rapidly decrease and is undetectable by culture on day 30. The ability to track these organisms as they move in to once considered sterile space may be useful for sampling during autopsy to aid in determining post-mortem interval range estimations, cause of death, and origins associated with the geographic location of human remains during death investigations

    Azimuthal Correlations in the Target Fragmentation Region of High Energy Nuclear Collisions

    Get PDF
    Results on the target mass dependence of proton and pion pseudorapidity distributions and of their azimuthal correlations in the target rapidity range 1.73η1.32-1.73 \le \eta \le 1.32 are presented. The data have been taken with the Plastic-Ball detector set-up for 4.9 GeV p + Au collisions at the Berkeley BEVALAC and for 200 AA\cdotGeV/cc p-, O-, and S-induced reactions on different nuclei at the CERN-SPS. The yield of protons at backward rapidities is found to be proportional to the target mass. Although protons show a typical ``back-to-back'' correlations, a ``side-by-side'' correlation is observed for positive pions, which increases both with target mass and with impact parameter of a collision. The data can consistently be described by assuming strong rescattering phenomena including pion absorption effects in the entire excited target nucleus.Comment: 7 pages, figures included, complete postscript available at ftp://qgp.uni-muenster.de/pub/paper/azi-correlations.ps submitted to Phys. Lett.

    LOCV calculation for Beta-stable matter at finite temperature

    Full text link
    The method of lowest-order constrained variational, which predicts reasonably the nuclear matter semi-empirical data is used to calculate the equation of state of beta-stable matter at finite temperature. The Reid soft-core with and without the N-Δ\Delta interactions which fits the N-N scattering data as well as the UV14UV_{14} potential plus the three-nucleon interaction are considered in the nuclear many-body Hamiltonian. The electron and muon are treated relativistically in the total Hamiltonian at given temperature, to make the fluid electrically neutral and stable against beta decay. The calculation is performed for a wide range of baryon density and temperature which are of interest in the astrophysics. The free energy, entropy, proton abundance, etc. of nuclear beta-stable matter are calculated. It is shown that by increasing the temperature, the maximum proton abundance is pushed to the lower density while the maximum itself increases as we increase the temperature. The proton fraction is not enough to see any gas-liquid phase transition. Finally we get an overall agreement with other many-body techniques, which are available only at zero temperature.Comment: LaTex, 20 page
    corecore