63 research outputs found

    Ising model with periodic pinning of mobile defects

    Full text link
    A two-dimensional Ising model with short-range interactions and mobile defects describing the formation and thermal destruction of defect stripes is studied. In particular, the effect of a local pinning of the defects at the sites of straight equidistant lines is analysed using Monte Carlo simulations and the transfer matrix method. The pinning leads to a long-range ordered magnetic phase at low temperatures. The dependence of the phase transition temperature, at which the defect stripes are destabilized, on the pinning strength is determined. The transition seems to be of first order, with and without pinning.Comment: 7 pages, 7 figure

    Persistence in a Stationary Time-series

    Full text link
    We study the persistence in a class of continuous stochastic processes that are stationary only under integer shifts of time. We show that under certain conditions, the persistence of such a continuous process reduces to the persistence of a corresponding discrete sequence obtained from the measurement of the process only at integer times. We then construct a specific sequence for which the persistence can be computed even though the sequence is non-Markovian. We show that this may be considered as a limiting case of persistence in the diffusion process on a hierarchical lattice.Comment: 8 pages revte

    Real Roots of Random Polynomials and Zero Crossing Properties of Diffusion Equation

    Full text link
    We study various statistical properties of real roots of three different classes of random polynomials which recently attracted a vivid interest in the context of probability theory and quantum chaos. We first focus on gap probabilities on the real axis, i.e. the probability that these polynomials have no real root in a given interval. For generalized Kac polynomials, indexed by an integer d, of large degree n, one finds that the probability of no real root in the interval [0,1] decays as a power law n^{-\theta(d)} where \theta(d) > 0 is the persistence exponent of the diffusion equation with random initial conditions in spatial dimension d. For n \gg 1 even, the probability that they have no real root on the full real axis decays like n^{-2(\theta(2)+\theta(d))}. For Weyl polynomials and Binomial polynomials, this probability decays respectively like \exp{(-2\theta_{\infty}} \sqrt{n}) and \exp{(-\pi \theta_{\infty} \sqrt{n})} where \theta_{\infty} is such that \theta(d) = 2^{-3/2} \theta_{\infty} \sqrt{d} in large dimension d. We also show that the probability that such polynomials have exactly k roots on a given interval [a,b] has a scaling form given by \exp{(-N_{ab} \tilde \phi(k/N_{ab}))} where N_{ab} is the mean number of real roots in [a,b] and \tilde \phi(x) a universal scaling function. We develop a simple Mean Field (MF) theory reproducing qualitatively these scaling behaviors, and improve systematically this MF approach using the method of persistence with partial survival, which in some cases yields exact results. Finally, we show that the probability density function of the largest absolute value of the real roots has a universal algebraic tail with exponent {-2}. These analytical results are confirmed by detailed numerical computations.Comment: 32 pages, 16 figure

    Measurement of the Running of the Electromagnetic Coupling at Large Momentum-Transfer at LEP

    Get PDF
    The evolution of the electromagnetic coupling, alpha, in the momentum-transfer range 1800GeV^2 < -Q^2 < 21600GeV^2 is studied with about 40000 Bhabha-scattering events collected with the L3 detector at LEP at centre-of-mass energies 189-209GeV. The running of alpha is parametrised as: alpha(Q^2) = alpha_0/(1-C Delta alpha(Q^2)), where alpha_0=\alpha(Q^2=0) is the fine-structure constant and C=1 corresponds to the evolution expected in QED. A fit to the differential cross section of the e+e- ->e+e- process for scattering angles in the range |cos theta|<0.9 excludes the hypothesis of a constant value of alpha, C=0, and validates the QED prediction with the result: C = 1.05 +/- 0.07 +/- 0.14, where the first uncertainty is statistical and the second systematic

    Prospects for e+e- physics at Frascati between the phi and the psi

    Get PDF
    We present a detailed study, done in the framework of the INFN 2006 Roadmap, of the prospects for e+e- physics at the Frascati National Laboratories. The physics case for an e+e- collider running at high luminosity at the phi resonance energy and also reaching a maximum center of mass energy of 2.5 GeV is discussed, together with the specific aspects of a very high luminosity tau-charm factory. Subjects connected to Kaon decay physics are not discussed here, being part of another INFN Roadmap working group. The significance of the project and the impact on INFN are also discussed. All the documentation related to the activities of the working group can be found in http://www.roma1.infn.it/people/bini/roadmap.html.Comment: INFN Roadmap Report: 86 pages, 25 figures, 9 table

    Measurements of the cross sections for e+ehadronse^+e^- \to {\rm hadrons} at 3.650, 3.6648, 3.773 GeV and the branching fraction for ψ(3770)nonDDˉ\psi(3770)\to {\rm non-}D\bar D

    Get PDF
    Using the BES-II detector at the BEPC Collider, we measured the lowest order cross sections and the RR values (R=σe+ehadrons0/σe+eμ+μ0R=\sigma^0_{e^+e^- \to {\rm hadrons}}/\sigma^0_{e^+e^- \to \mu^+\mu^-}) for inclusive hadronic event production at the center-of-mass energies of 3.650 GeV, 3.6648 GeV and 3.773 GeV. The results lead to Rˉuds=2.224±0.019±0.089\bar R_{uds}=2.224\pm 0.019\pm 0.089 which is the average of these measured at 3.650 GeV and 3.6648 GeV, and R=3.793±0.037±0.190R=3.793\pm 0.037 \pm 0.190 at s=3.773\sqrt{s}=3.773 GeV. We determined the lowest order cross section for ψ(3770)\psi(3770) production to be σψ(3770)B=(9.575±0.256±0.813) nb\sigma^{\rm B}_{\psi(3770)} = (9.575\pm 0.256 \pm 0.813)~{\rm nb} at 3.773 GeV, the branching fractions for ψ(3770)\psi(3770) decays to be BF(ψ(3770)D0Dˉ0)=(48.9±1.2±3.8)BF(\psi(3770) \to D^0\bar D^0)=(48.9 \pm 1.2 \pm 3.8)%, BF(ψ(3770)D+D)=(35.0±1.1±3.3)BF(\psi(3770) \to D^+ D^-)=(35.0 \pm 1.1 \pm 3.3)% and BF(ψ(3770)DDˉ)=(83.9±1.6±5.7)BF(\psi(3770) \to D\bar{D})=(83.9 \pm 1.6 \pm 5.7)%, which result in the total non-DDˉD\bar D branching fraction of ψ(3770)\psi(3770) decay to be BF(ψ(3770)nonDDˉ)=(16.1±1.6±5.7)BF(\psi(3770) \to {\rm non}-D\bar D)=(16.1 \pm 1.6 \pm 5.7)%.Comment: 11 pages, 5 figure

    Physics with the KLOE-2 experiment at the upgraded DAϕ\phiNE

    Get PDF
    Investigation at a ϕ\phi--factory can shed light on several debated issues in particle physics. We discuss: i) recent theoretical development and experimental progress in kaon physics relevant for the Standard Model tests in the flavor sector, ii) the sensitivity we can reach in probing CPT and Quantum Mechanics from time evolution of entangled kaon states, iii) the interest for improving on the present measurements of non-leptonic and radiative decays of kaons and eta/eta^\prime mesons, iv) the contribution to understand the nature of light scalar mesons, and v) the opportunity to search for narrow di-lepton resonances suggested by recent models proposing a hidden dark-matter sector. We also report on the e+ee^+ e^- physics in the continuum with the measurements of (multi)hadronic cross sections and the study of gamma gamma processes.Comment: 60 pages, 41 figures; added affiliation for one of the authors; added reference to section
    corecore