218 research outputs found

    Quantum walk on distinguishable non-interacting many-particles and indistinguishable two-particle

    Full text link
    We present an investigation of many-particle quantum walks in systems of non-interacting distinguishable particles. Along with a redistribution of the many-particle density profile we show that the collective evolution of the many-particle system resembles the single-particle quantum walk evolution when the number of steps is greater than the number of particles in the system. For non-uniform initial states we show that the quantum walks can be effectively used to separate the basis states of the particle in position space and grouping like state together. We also discuss a two-particle quantum walk on a two- dimensional lattice and demonstrate an evolution leading to the localization of both particles at the center of the lattice. Finally we discuss the outcome of a quantum walk of two indistinguishable particles interacting at some point during the evolution.Comment: 8 pages, 7 figures, To appear in special issue: "quantum walks" to be published in Quantum Information Processin

    Gravitational field around a screwed superconducting cosmic string in scalar-tensor theories

    Get PDF
    We obtain the solution that corresponds to a screwed superconducting cosmic string (SSCS) in the framework of a general scalar-tensor theory including torsion. We investigate the metric of the SSCS in Brans-Dicke theory with torsion and analyze the case without torsion. We show that in the case with torsion the space-time background presents other properties different from that in which torsion is absent. When the spin vanish, this torsion is a ϕ\phi-gradient and then it propagates outside of the string. We investigate the effect of torsion on the gravitational force and on the geodesics of a test-particle moving around the SSCS. The accretion of matter by wakes formation when a SSCS moves with speed vv is investigated. We compare our results with those obtained for cosmic strings in the framework of scalar-tensor theory.Comment: 22 pages, LaTeX, presented at the "XXII - Encontro Nacional de Fisica de Particulas e Campos", Sao Lourenco, MG, Brazi

    Design and Research of Electron Cyclotron Resonance Heating and Current Dive System on HL-2M Tokamak

    Full text link
    A research has been conducted to develop an 8MW electron cyclotron resonance heating and current drive (ECRH/ECCD) system on HL-2M tokamak. The ECRH system compromise eight 1MW gyrotrons, eight evacuated transmission lines and three launchers. The main purpose of the ECRH system was to suppress the neo-classical tearing modes and control the plasma profile. This paper presents an overview of the design and studies performed in this framework. Some primary test results of the critical components have been released in this paper, e.g. polarizers, power monitor and fast steering launchers

    Gravitational field around a time-like current-carrying screwed cosmic string in scalar-tensor theories

    Full text link
    In this paper we obtain the space-time generated by a time-like current-carrying superconducting screwed cosmic string(TCSCS). This gravitational field is obtained in a modified scalar-tensor theory in the sense that torsion is taken into account. We show that this solution is comptible with a torsion field generated by the scalar field ϕ\phi . The analysis of gravitational effects of a TCSCS shows up that the torsion effects that appear in the physical frame of Jordan-Fierz can be described in a geometric form given by contorsion term plus a symmetric part which contains the scalar gradient. As an important application of this solution, we consider the linear perturbation method developed by Zel'dovich, investigate the accretion of cold dark matter due to the formation of wakes when a TCSCS moves with speed vv and discuss the role played by torsion. Our results are compared with those obtained for cosmic strings in the framework of scalar-tensor theories without taking torsion into account.Comment: 21 pages, no figures, Revised Version, presented at the "XXIV- Encontro Nacional de Fisica de Particulas e Campos ", Caxambu, MG, Brazil, to appear in Phys. Rev.

    Symmetry and topology in antiferromagnetic spintronics

    Full text link
    Antiferromagnetic spintronics focuses on investigating and using antiferromagnets as active elements in spintronics structures. Last decade advances in relativistic spintronics led to the discovery of the staggered, current-induced field in antiferromagnets. The corresponding N\'{e}el spin-orbit torque allowed for efficient electrical switching of antiferromagnetic moments and, in combination with electrical readout, for the demonstration of experimental antiferromagnetic memory devices. In parallel, the anomalous Hall effect was predicted and subsequently observed in antiferromagnets. A new field of spintronics based on antiferromagnets has emerged. We will focus here on the introduction into the most significant discoveries which shaped the field together with a more recent spin-off focusing on combining antiferromagnetic spintronics with topological effects, such as antiferromagnetic topological semimetals and insulators, and the interplay of antiferromagnetism, topology, and superconductivity in heterostructures.Comment: Book chapte

    Strategies for Controlled Placement of Nanoscale Building Blocks

    Get PDF
    The capability of placing individual nanoscale building blocks on exact substrate locations in a controlled manner is one of the key requirements to realize future electronic, optical, and magnetic devices and sensors that are composed of such blocks. This article reviews some important advances in the strategies for controlled placement of nanoscale building blocks. In particular, we will overview template assisted placement that utilizes physical, molecular, or electrostatic templates, DNA-programmed assembly, placement using dielectrophoresis, approaches for non-close-packed assembly of spherical particles, and recent development of focused placement schemes including electrostatic funneling, focused placement via molecular gradient patterns, electrodynamic focusing of charged aerosols, and others

    Age at first birth in women is genetically associated with increased risk of schizophrenia

    Get PDF
    Prof. Paunio on PGC:n jäsenPrevious studies have shown an increased risk for mental health problems in children born to both younger and older parents compared to children of average-aged parents. We previously used a novel design to reveal a latent mechanism of genetic association between schizophrenia and age at first birth in women (AFB). Here, we use independent data from the UK Biobank (N = 38,892) to replicate the finding of an association between predicted genetic risk of schizophrenia and AFB in women, and to estimate the genetic correlation between schizophrenia and AFB in women stratified into younger and older groups. We find evidence for an association between predicted genetic risk of schizophrenia and AFB in women (P-value = 1.12E-05), and we show genetic heterogeneity between younger and older AFB groups (P-value = 3.45E-03). The genetic correlation between schizophrenia and AFB in the younger AFB group is -0.16 (SE = 0.04) while that between schizophrenia and AFB in the older AFB group is 0.14 (SE = 0.08). Our results suggest that early, and perhaps also late, age at first birth in women is associated with increased genetic risk for schizophrenia in the UK Biobank sample. These findings contribute new insights into factors contributing to the complex bio-social risk architecture underpinning the association between parental age and offspring mental health.Peer reviewe
    corecore