120 research outputs found

    A Cross-Whiskers Junction as a Novel Fabrication Process for Intrinsic Josephson Junction

    Full text link
    A Bi2Sr2CaCu2O8+d cross-whiskers junction has been successfully discovered as a novel intrinsic Josephson junction without using any technique for micro-fabrication. Two Bi2Sr2CaCu2O8+d whisker crystals were placed crosswise on a MgO substrate and heated at 850C for 30 min. They were electrically connected at their c-planes. The measurement terminals were made at the four ends of the whiskers. The I-V characteristics of the cross-whiskers junction at 5K were found to show a clear multiple-branch structure with a spacing of approximately 15 mV that is a feature of the intrinsic Josephson junction. The critical current density Jc was estimated to be 1170 A/cm2. The branch-structure was strongly suppressed by the magnetic field above 1kOe.Comment: 4 pages, PDF fil

    d-like Symmetry of the Order Parameter and Intrinsic Josephson Effects in Bi2212 Cross-Whisker Junctions

    Full text link
    An intrinsic tunnel junction was made using two Bi-2212 single crystal whiskers. The two whiskers with a cross-angle were overlaid at their c-planes and connected by annealing. The angular dependence of the critical current density along the c-axis is of the d-wave symmetry. However, the angular dependence is much stronger than that of the conventional d-wave. Furthermore, the current vs. voltage characteristics of the cross-whiskers junctions show a multiple-branch structure at any cross-angle, indicating the formation of the intrinsic Josephson junction array.Comment: 4 pages PDF fil

    SUMOylation of DRIL1 Directs Its Transcriptional Activity Towards Leukocyte Lineage-Specific Genes

    Get PDF
    DRIL1 is an ARID family transcription factor that can immortalize primary mouse fibroblasts, bypass RASV12-induced cellular senescence and collaborate with RASV12 or MYC in mediating oncogenic transformation. It also activates immunoglobulin heavy chain transcription and engages in heterodimer formation with E2F to stimulate E2F-dependent transcription. Little, however, is known about the regulation of DRIL1 activity. Recently, DRIL1 was found to interact with the SUMO-conjugating enzyme Ubc9, but the functional relevance of this association has not been assessed. Here, we show that DRIL1 is sumoylated both in vitro and in vivo at lysine 398. Moreover, we provide evidence that PIASy functions as a specific SUMO E3-ligase for DRIL1 and promotes its sumoylation both in vitro and in vivo. Furthermore, consistent with the subnuclear localization of PIASy in the Matrix-Associated Region (MAR), SUMO-modified DRIL1 species are found exclusively in the MAR fraction. This post-translational modification interferes neither with the subcellular localization nor the DNA-binding activity of the protein. In contrast, DRIL1 sumoylation impairs its interaction with E2F1 in vitro and modifies its transcriptional activity in vivo, driving transcription of subset of genes regulating leukocyte fate. Taken together, these results identify sumoylation as a novel post-translational modification of DRIL1 that represents an important mechanism for targeting and modulating DRIL1 transcriptional activity

    Mammalian Stem Cells Reprogramming in Response to Terahertz Radiation

    Get PDF
    We report that extended exposure to broad-spectrum terahertz radiation results in specific changes in cellular functions that are closely related to DNA-directed gene transcription. Our gene chip survey of gene expression shows that whereas 89% of the protein coding genes in mouse stem cells do not respond to the applied terahertz radiation, certain genes are activated, while other are repressed. RT-PCR experiments with selected gene probes corresponding to transcripts in the three groups of genes detail the gene specific effect. The response was not only gene specific but also irradiation conditions dependent. Our findings suggest that the applied terahertz irradiation accelerates cell differentiation toward adipose phenotype by activating the transcription factor peroxisome proliferator-activated receptor gamma (PPARG). Finally, our molecular dynamics computer simulations indicate that the local breathing dynamics of the PPARG promoter DNA coincides with the gene specific response to the THz radiation. We propose that THz radiation is a potential tool for cellular reprogramming

    Neurologic phenotypes associated with COL4A1/2 mutations

    Get PDF
    Objective: To characterize the neurologic phenotypes associated with COL4A1/2 mutations and to seek genotype–phenotype correlation. Methods: We analyzed clinical, EEG, and neuroimaging data of 44 new and 55 previously reported patients with COL4A1/COL4A2 mutations. Results: Childhood-onset focal seizures, frequently complicated by status epilepticus and resistance to antiepileptic drugs, was the most common phenotype. EEG typically showed focal epileptiform discharges in the context of other abnormalities, including generalized sharp waves or slowing. In 46.4% of new patients with focal seizures, porencephalic cysts on brain MRI colocalized with the area of the focal epileptiform discharges. In patients with porencephalic cysts, brain MRI frequently also showed extensive white matter abnormalities, consistent with the finding of diffuse cerebral disturbance on EEG. Notably, we also identified a subgroup of patients with epilepsy as their main clinical feature, in which brain MRI showed nonspecific findings, in particular periventricular leukoencephalopathy and ventricular asymmetry. Analysis of 15 pedigrees suggested a worsening of the severity of clinical phenotype in succeeding generations, particularly when maternally inherited. Mutations associated with epilepsy were spread across COL4A1 and a clear genotype–phenotype correlation did not emerge. Conclusion: COL4A1/COL4A2 mutations typically cause a severe neurologic condition and a broader spectrum of milder phenotypes, in which epilepsy is the predominant feature. Early identification of patients carrying COL4A1/COL4A2 mutations may have important clinical consequences, while for research efforts, omission from large-scale epilepsy sequencing studies of individuals with abnormalities on brain MRI may generate misleading estimates of the genetic contribution to the epilepsies overall

    De Novo Mutations in SLC1A2 and CACNA1A Are Important Causes of Epileptic Encephalopathies

    Get PDF
    Epileptic encephalopathies (EEs) are the most clinically important group of severe early-onset epilepsies. Next-generation sequencing has highlighted the crucial contribution of de novo mutations to the genetic architecture of EEs as well as to their underlying genetic heterogeneity. Our previous whole-exome sequencing study of 264 parent-child trios revealed more than 290 candidate genes in which only a single individual had a de novo variant. We sought to identify additional pathogenic variants in a subset (n = 27) of these genes via targeted sequencing in an unsolved cohort of 531 individuals with a diverse range of EEs. We report 17 individuals with pathogenic variants in seven of the 27 genes, defining a genetic etiology in 3.2% of this unsolved cohort. Our results provide definitive evidence that de novo mutations in SLC1A2 and CACNA1A cause specific EEs and expand the compendium of clinically relevant genotypes for GABRB3. We also identified EEs caused by genetic variants in ALG13, DNM1, and GNAO1 and report a mutation in IQSEC2. Notably, recurrent mutations accounted for 7/17 of the pathogenic variants identified. As a result of high-depth coverage, parental mosaicism was identified in two out of 14 cases tested with mutant allelic fractions of 5%–6% in the unaffected parents, carrying significant reproductive counseling implications. These results confirm that dysregulation in diverse cellular neuronal pathways causes EEs, and they will inform the diagnosis and management of individuals with these devastating disorders

    Fingerprinting of neurotoxic compounds using a mouse embryonic stem cell dual luminescence reporter assay

    Get PDF
    corecore