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of compounds showed distinct concentration–response 
profiles. Plotting of the lowest observed adverse effect 
concentrations (LOAEL) of the neuronal promoter activ-
ity against the general promoter activity or against cyto-
toxicity, allowed the differentiation between neurotoxic/
DNT substances and non-neurotoxic controls. Reporter 
activity responses in neurons were more susceptible 
to neurotoxic compounds than the reporter activities in 
ESCs from which they were derived. To relate the effec-
tive/toxic concentrations found in our study to relevant 
in vivo concentrations, we used a reverse pharmacoki-
netic modeling approach for three exemplary com-
pounds (teriflunomide, geldanamycin, abiraterone). The 
dual luminescence reporter assay described in this study 
allows high-throughput, and should be particularly useful 
for the prioritization of the neurotoxic potential of a large 
number of compounds.

Keywords Mouse embryonic stem cells ·  
Neuroactivity · Neurotoxicity · In vitro screening · 
Neuronal differentiation

Abstract Identification of neurotoxic drugs and envi-
ronmental chemicals is an important challenge. However, 
only few tools to address this topic are available. The aim 
of this study was to develop a neurotoxicity/developmen-
tal neurotoxicity (DNT) test system, using the pluripotent 
mouse embryonic stem cell line CGR8 (ESCs). The test 
system uses ESCs at two differentiation stages: undif-
ferentiated ESCs and ESC-derived neurons. Under each 
condition, concentration–response curves were obtained 
for three parameters: activity of the tubulin alpha 1 pro-
moter (typically activated in early neurons), activity 
of the elongation factor 1 alpha promoter (active in all 
cells), and total DNA content (proportional to the num-
ber of surviving cells). We tested 37 compounds from 
the ESNATS test battery, which includes polypeptide 
hormones, environmental pollutants (including methyl-
mercury), and clinically used drugs (including valproic 
acid and tyrosine kinase inhibitors). Different classes 
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Introduction

Identification of neurotoxicity or developmental neurotox-
icity is an important challenge. Animal tests remain the 
principal experimental approach. Although the guidelines 
for testing neurodevelopmental toxicity of compounds 
(Tsuji and Crofton 2012) rely mainly on in vivo testing, 
logistic, scientific, and ethical arguments suggest that well-
controlled in vitro systems that detect neurodevelopmental 
toxicity and/or neurotoxicity should be developed (Hartung 
and Leist 2008; Leist et al. 2008). Stem cell-based tech-
nologies are particularly promising in this respect and the 
EU consortium “embryonic stem cell-based novel alterna-
tive tests” (ESNATS www.esnats.eu) was dedicated to the 
development of such in vitro systems. Several toxicity test 
systems were developed in the context of this consortium 
(Leist et al. 2013), including transcriptomics-based assays 
(Krug et al. 2013b; Zimmer et al. 2011), a neurite exten-
sion assay (Krug et al. 2013a), and a neural crest migra-
tion assay (Zimmer et al. 2012, 2014). Given the different 
parameters measured by different neurotoxicity assays, it is 
likely that the combination of different in vitro tests, i.e., a 
test battery will be the most promising approach for predic-
tive in vitro testing (Leist et al. 2014; Zimmer et al. 2014).

Generally, two types of neurotoxicity are distinguished: 
developmental neurotoxicity (DNT), which basically refers 
to the impact of toxicants on the highly sensitive develop-
ing brain, and general neurotoxicity which occurs in the 
mature brain and peripheral nervous system (Bal-Price 
et al. 2015; Smirnova et al. 2014). In many cases, com-
pounds, such as methylmercury, that cause developmental 
neurotoxicity at low exposure levels may also lead to gen-
eral neurotoxicity at higher exposure levels. However, other 
compounds, such as valproic acid, that are clearly develop-
mental neurotoxicants show little evidence for toxicity to 
the mature brain. Noteworthy, identification and classifica-
tion of compounds in these categories based on currently 
available studies appear to be uneasy. Major limitations of 
presently available studies on neurotoxicity, both develop-
mental and general, include the following aspects:

•	 Relatively few clinical and epidemiological data are 
available (Smirnova et al. 2014). Well-accepted excep-
tions are tragic events such as the large-scale methyl-
mercury poisoning in Minamata (Ekino et al. 2007) 
or the identification of the fetal valproate syndrome 
because of the widespread treatment of pregnant epilep-
tic patients with valproic acid (Ozkan et al. 2011; Smith 
and Whitehall 2009);

•	 Neurotoxicity is typically not characterized by cyto-
toxicity (i.e., neuronal cell death), but rather by impact 
of toxicants on connectivity, structure, and function of 

the nervous system during development or at maturity 
(Giordano and Costa 2012);

•	 Extrapolation of data from animal experiments to the 
human situation may be challenging due to interspe-
cies differences (“humans are no 70 kg mice” (Leist and 
Hartung 2013);

•	 In vitro studies on neurotoxicity usually use trans-
formed or cancer cell lines, which have a response pat-
tern significantly different from normal cells (Kadereit 
et al. 2012; Stiegler et al. 2011).

Validated in vitro methods using stem cell-derived 
neurons and neural tissues might overcome several of the 
above cited limitations and allow a more reliable prediction 
of neurotoxicity (Coecke et al. 2007; Krug et al. 2013b; 
Pistollato et al. 2012; Rovida et al. 2011; van Thriel et al. 
2012). Pluripotent stem cells provide attractive cellular sys-
tems for in vitro toxicology studies, because they are non-
transformed cells and have the potential to differentiate into 
the main neural lineages such as neural progenitors cells, 
neurons, and glial cells (Breier et al. 2010; Kuegler et al. 
2010) and provide the starting material for neural tissue 
engineering (Preynat-Seauve et al. 2009).

The validation of novel in vitro neurotoxicity test sys-
tems strongly depends on the availability of well-charac-
terized neurotoxic as well as non-neurotoxic compounds. 
For this purpose, the ESNATS consortium has developed 
a compound collection, including the so-called test battery 
compounds (Zimmer et al. 2014) as well as organomer-
cury compounds and HDAC inhibitors (Krug et al. 2013b). 
The test battery compound collection includes several 
classes of compounds, pharmaceuticals (e.g., abiraterone, 
amiodarone), biologics (e.g., interferon-β, oxytocin), pep-
tide-related small molecules (e.g., sitagliptin, galnon), and 
environmental pollutants (e.g., PDBE-99, triadimefon). 
The most widely used model compounds for neurotoxic-
ity are valproic acid and methylmercury. Valproic acid is 
mostly a developmental neurotoxicant, while methylmer-
cury also causes general neurotoxicity in humans and ani-
mals (Kadereit et al. 2012; Wang et al. 2011). When given 
to pregnant women, the anti-epileptic drug valproic acid 
causes neural tube defects; in vitro, it triggers relevant 
changes of the cellular transcriptome through the inhibi-
tion of histone deacetylases (HDAC) (Krug et al. 2013b; 
Theunissen et al. 2011). The mechanisms of action of 
methylmercury still have not been completely elucidated, 
but its usefulness as a neurotoxic model compound is 
undisputed because of the abundantly available clinical 
data on human neurodevelopmental toxicity and general 
neurotoxicity (Clarkson and Strain 2003; Davidson et al. 
2004; Ekino et al. 2007; Harada 1995). During develop-
mental exposure, methylmercury causes among others 
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neural tube defects (Grandjean and Herz 2011; Robinson 
et al. 2011), while in the adult exposed to the compound, 
symptoms such as blurred vision, hearing impairment, 
olfactory and gustatory disturbances, cerebellar ataxia, 
somatosensory, and psychiatric disorders were observed 
(Ekino et al. 2007).

The major limitation of many in vitro neurotoxicity 
assays is the fact that they are labor-intensive and time-
consuming. Mouse embryonic stem cell (mESC) systems 
show a higher throughput and robustness when compared 
to the human counterpart, and they offer a better chance 
to compare in vitro data with the already existing murine 
and rat in vivo databases (Kuegler et al. 2010; Leist et al. 
2013). Furthermore, these systems can be easily engineered 
for high content imaging (HCI) approaches (van Vliet et al. 
2014) or with reporter constructs providing a faster readout. 
We have previously developed a dual-luciferase reporter 
construct that upon expression in mouse embryonic stem 
cells provide read-out in stem cell-derived neurons (Suter 
et al. 2009). In the context of the ESNATS consortium, we 
have screened a 1000-compound library with a single fixed 
concentration per compound, demonstrating the potential 
of this assay (Kern et al. 2013).

In the present study, we used the dual luminescence 
reporter assay to establish a high-throughput neurotoxic-
ity test that compares the impact of toxicants on undiffer-
entiated pluripotent stem cells (ESCs) with the impact on 
differentiated ESC-derived neurons. For each tested com-
pound, the assay determines six dose–response curves: 
three dose–response curves in undifferentiated ESCs, and 
three in ESC-derived neurons. To evaluate the human rel-
evance of concentrations tested positive in the dual lumi-
nescence reporter assay, a physiology-based pharmacoki-
netic (PBPK) reverse modeling method was applied. We 
propose this approach as a promising tool for identifying 
compounds that may cause DNT/neurotoxicity.

Materials and methods

Chemicals

Murine CGR8 ESCs were purchased from European Col-
lection of Cell Culture. The bone marrow stromal MS5 
cell line was kindly provided by Katsuhiko Itoh (Itoh et al. 
1989). Cell culture reagents were purchased from Gibco, 
Invitrogen Corporation (Paisley, Scotland). Dual-lucif-
erase® Reporter Assay System was from Promega (Madi-
son, WI, USA), the Fluostar Optima reader from BMG 
Labtech GmbH (Hanns-Martin-Schleyer-Str. 10, D-7656 
Offenburg/Germany), and the Flexstation 3 microplate 
reader from Molecular Devices (Sunnyvale, California, 
USA). All non-neurotoxic and cytotoxic controls used 

in this study were obtained from Sigma. Providers of the 
other compounds are listed in Table 1.

CGR8‑2Luc cells

Dual luciferase expressing CGR8-2Luc cells were obtained 
by transduction of mouse ESC CGR8 cells with the 2K7 
EFS-Renilla Luciferase (RLuc)/Talpha1-Firefly Luciferase 
(FLuc) vector as previously described (Suter et al. 2006, 
2009); EFS corresponds to the short promoter of the eukar-
yotic translation elongation factor 1 alpha (EF1α), and Tal-
pha1 to the Tubulin α1 (Tα1) promoter. Tα1 was selected 
as a promoter active in neurons, including early stages of 
neural differentiation. EF1α was originally selected to 
function as a constitutive promoter; however, it responds to 
cellular differentiation as well as to various chemicals, as 
previously shown (Kern et al. 2013). Cells were cultured 
on 0.1 % gelatin-coated dishes in CGR8-2luc maintenance 
medium: BHK21 medium, supplemented with 10 % fetal 
calf serum, l-glutamine, non-essential amino acids, peni-
cillin/streptomycin, and leukemia inhibitory factor (LIF). 
CGR8 cells were grown in a feeder-independent manner 
(embryonic pluripotent stem cells, ESCs) as described in 
protocol 1 (Fig. 1) before testing compounds of interest.

CGR8 2‑Luc differentiation and exposure 
to compounds

To test compounds on ESC-derived neurons, neuronal dif-
ferentiation was carried out as previously described (Suter 
et al. 2009; Xu et al. 2014). Briefly, CGR8-2Luc cells were 
seeded on irradiated bone marrow-derived stromal MS5 
cells and cultivated for 4 days in DMEM medium contain-
ing 15 % Knock-out™ Serum Replacement, non-essential 
amino acids, beta-mercaptoethanol, and penicillin/strepto-
mycin. At day 5, cells were then re-plated (3 × 105 cells/
cm2) on polyornithine-coated 96-well plates in N2 medium 
containing DMEM, N2 supplement, penicillin/strepto-
mycin, and 10 ng/ml basic human fibroblast growth fac-
tor (bFGF) (Invitrogen). After 48 h of incubation in N2 
medium, abundant cells with neuron-like morphology 
were observed. Immunofluorescence analysis (data not 
shown) demonstrated that 100 % of these cells were βIII 
tubulin-positive, as previously described (Kern et al. 2013). 
However, most cells did not yet stain positive for neuronal 
subtypes (glutamatergic neurons = vGlut (vesicular glu-
tamate transporter), GABAergic neurons = GAD67 (glu-
tamic acid decarboxylase), cholinergic neurons = ChAT 
(choline acetyltransferase), with the notable exception of 
some neurons staining for tyrosine hydroxylase (TH) (i.e., 
a marker of dopaminergic neurons). For toxicity testing, 
cells were grown for 24 h after replating before exposure 
to the respective compounds for 48 h. Cells were lysed, 
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and the dual luminescence assay was performed fol-
lowed by propidium iodide (PI) measurement (protocol 2, 
Fig. 1). To assess toxicity of compounds on undifferenti-
ated pluripotent stem cells (ESCs), CGR8-2Luc cells were 
plated at 45,000 cells/cm2 on 0.1 % gelatin-coated dishes in 
BHK21 medium, supplemented with 10 % fetal calf serum, 
l-glutamine, non-essential amino acids, penicillin/strep-
tomycin, and leukemia inhibitory factor (LIF). After 24 h, 
compounds were added and incubated for 48 h, before 
luciferase expression and PI fluorescence were analyzed. In 
all experiments, methylmercury was used as a positive con-
trol at a concentration of 5 µM.

Dual luminescence assay

Luciferase activities were measured with a Dual-Lucif-
erase™ Reporter system kit. CGR8-2Luc ES cells were 
lysed in 96-well plates according to the manufacturer’s 
instructions. Luminescence measurements were per-
formed on a Fluostar Optima reader. Luminescence counts 
were expressed as percentage of promoter activity nor-
malized by comparison with the control wells treated by 
DMSO. High standard deviation (SD) observed in RLuc 
values is explained by the very low expression of the gen-
eral promoter in neurons. Two parameters were measured 
in homogenates of ESCs and in ESC-derived neurons: 
(1) FLuc, reflecting the activity of early neural promoter 
Tα1. FLuc increases during neuronal differentiation. 
Many neurotoxic compounds may affect FLuc expression, 
either through impact on neuronal differentiation, through 
changes of neuronal gene expression, or through killing of 
neurons. Note, however, that in some cases, there may be 
an increase of FLuc expression through potential neuro-
toxicants (Kern et al. 2013); (2) RLuc, reflecting the activ-
ity of the ubiquitous promoter EF1α. Note that in previous 
studies we have shown that this promoter activity markedly 
decreased during cellular differentiation and it can there-
fore not be used as a house-keeping gene to approximate 
the cell numbers during cellular differentiation.

Propidium iodide (PI) assay

After measurement of luciferase activity, DNA quantity 
was determined by PI assay, as previously described (Xu 
et al. 2014). PI was added to cell homogenates after the 
luciferase test, at a final concentration of 50 µg/ml and incu-
bated for 2 h. After incubation, fluorescence intensity was 
measured on a Flexstation 3 microplate reader (Excitation: 
544 nm ± 15 nm; Emission: 620 nm ± 15 nm). Results are 
expressed as percentage of control. Propidium iodide (PI) 
measures total DNA content as an approximation of the 
cell number. A decrease in PI fluorescence was interpreted 
as a decrease in cell number and therefore throughout the 

text referred to as cytotoxicity. Note that none of the com-
pounds led to an increase in PI fluorescence.

Statistical analysis

Luminescence counts were expressed as percentage of 
promoter expression normalized by comparison with the 
control wells treated by DMSO. PI results are expressed as 
percentage of control. For outlier analysis, we performed 
the Grubbs’ test. The results were analyzed using GraphPad 
Prism 6 software (GraphPad Software, San Diego, CA).

Assay performance and plate acceptance criteria

To monitor assay sensitivity, S/B ratios were calculated as 
mean of negative control signal/mean of positive control. 
Mean, SD, and coefficient of variation (CV) for each signal 

Culture on gela�n-coated plates 

0 1 2 3 

Compound exposure (48 h) 

A Protocol for tes�ng compounds on ESCs 

Co-culture with MS5 cells 

0 1 5 6 7 8 

Compound exposure (48 h) 

Polyornithin-coated plates 

Days 

Days 

B Protocol for tes�ng compounds on ESC-derived neurons 

BHK21 medium 

DMEM medium N2 medium 

Fig. 1  Synopsis of experimental protocols. The impact of com-
pounds on neural promoter activity (FLuc, Firefly Luciferase under 
the control of the Tα1 promoter), general promoter activity (RLuc, 
Renilla Luciferase under the control of the EF1α promoter), and 
amount of DNA (PI, propidium iodide fluorescence in cell homoge-
nates) was investigated in undifferentiated mouse embryonic pluri-
potent stem cells (ESCs) and on ESC-derived neurons. Arrows indi-
cate the time of measurement of the three parameters. a Protocol for 
testing compounds effects on ESCs. CGR8-2Luc cells were plated 
on gelatin-coated 96-well plates in maintenance medium (BHK21 
medium containing 10 % FCS, l-glutamine, NEAA, P/S, and LIF). 
Twenty-four hours later, cells were exposed to compounds for forty-
eight hours. b Protocol for testing compounds on ESC-derived neu-
rons. CGR8-2Luc cells were co-cultured with MS5 cells to induce 
neural differentiation in DMEM medium containing 15 % KO-serum, 
NEAA, β-mercaptoethanol, and P/S. On day 5, cells were detached 
and seeded on polyornithine-coated plates in DMEM medium con-
taining N2 supplement, bFGF, and P/S; compound exposure was 
from day 6 to day 8
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(positive and negative controls) were computed. As accept-
ance criteria, we set a maximum CV of each signal at 20 %. 
To evaluate the robustness of each assay, we assessed the 
Z value and the Signal Window (SW) calculated accord-
ing to the following equations: Z = 1−(3SD of negative 
control + 3SD of positive control)/|(mean of positive con-
trol–mean of negative control)| and SW = ((mean negative 
control–3SD negative control/√n)–(mean positive con-
trol + 3SD positive control/√n))/(SD negative control/√n) 
(Iversen et al. 2012; Perrin et al. 2006), where n is the num-
ber of replicates of the test substance that has been used in 
our assay. As acceptance criteria, we chose SW ≥ 3 and 
Z ≥ 0.4 on all plates.

Characterization of concentration–response curves

To describe the shape of different concentration–response 
curves, arbitrary scores were assigned as follows: 0 for 
“no change,” 1 for “down-stroke,” 2 for “bimodal profile,” 
and 3 for “up-stroke” (Fig. S1). A curve was classified as 
“down-stroke” or “up-stroke” if the change in response val-
ues comparative to control was statistically significant (p 
value <0.05, one-way ANOVA with post hoc Dunnett) with 
an additional requirement of a 30 % decrease or increase of 
mean response value relative to controls, respectively. If the 
absolute change in mean response values was below 30 % 
the curve was classified as “no change.” A curve was classi-
fied as “bimodal” if first up-stroke and subsequently down-
stroke was observed.

LOAEL evaluation

Lowest adverse effect level (LOAEL) was defined as the 
lowest tested concentrations that lead to a statistically sig-
nificant decrease for a given read-out (FLuc, RLuc, and 
PI) compared to baseline. “Baseline” was not in all cases 
defined by untreated cells, but may also refer to, e.g., a 
state of increased activity due to low, non-toxic compound 
concentrations.

In vitro–in vivo comparison of toxicity data by PBPK 
modeling

To evaluate the human relevance of in vitro concentrations 
found to be toxic in this study, an in vitro–in vivo com-
parison of the toxicity data was performed using a phys-
iology-based pharmacokinetic (PBPK) reverse modeling 
approach. In particular, the following steps were taken: (a) 
data mining to find published studies reporting relevant 
concentrations inducing (neuro-) developmental toxic-
ity in vivo or reporting relevant therapeutic concentrations 
reached in humans during clinical studies (when possible); 

(b) extraction of pharmacokinetic (PK) parameters from 
published studies in rats or humans and use of these data to 
calculate free plasma concentrations; (c) calculation of the 
nominal in vitro concentrations equivalent to the concen-
trations predicted in vivo (NEC), determined by correcting 
for the differences in albumin concentration and lipid frac-
tion between plasma and test medium, using the following 
equation:

where ECpl is the effective plasma concentration; fb,pl 
corresponds to the plasma bound fraction; Kow is the 
octanol:water partition coefficient; VFL is the volume frac-
tions of lipids; P corresponds to the albumin concentration 
(or total protein concentration when indicated); and the suf-
fix “pl” and “x” are indicating plasma and one of the media 
used in this study (Gulden and Seibert 2003) (Fig. 7). The 
lipid content and albumin concentrations of the test media 
N2 and BHK medium were calculated on the basis of the 
available information provided by the suppliers (Fig. S2A). 
The data on rat plasma have been adopted from (Verwei 
et al. 2006). The original references are (Barber et al. 1990) 
for albumin and (DeJongh et al. 1997) for lipids. Human 
plasma values were taken from (Gulden and Seibert 2003). 
The original data on albumin are from (Lindup 1987) and 
for lipids from (Patterson et al. 1988). Total protein con-
centrations were calculated based on the assumption 
that the protein molar mass is similar to the one of albu-
min (66 kDa). Albumin was assumed to represent 60 and 
48 % of the total serum proteins (mg/ml) in human and rat 
(Baker et al. 1979; Busher 1990) (Fig. S2A).

In vitro–in vivo comparison of toxicity/clinical data 
for abiraterone

(a) Developmental toxicity (DT)—inducing concentrations 
were extrapolated from the in vivo study reported in the 
document by the Australian Therapeutic Goods Admin-
istration (Australian Therapeutic Goods Administration 
2014). In an embryo-fetal developmental toxicity study 
in rats, abiraterone acetate induced developmental toxic-
ity when administered at oral doses of 10, 30 or 100 mg/
kg/day throughout the period of organogenesis (gesta-
tional days 6–17). Findings include embryo-fetal lethality 
(increased postimplantation loss and decreased number of 
living fetuses), fetal developmental delay (skeletal effects), 
and urogenital effects (bilateral ureter dilation) at doses 
≥10 mg/kg/day (Australian Therapeutic Goods Admin-
istration 2014). (b) Toxicokinetic parameters of abirater-
one in rats were extracted from the available report from 
the TGA (Australian Therapeutic Goods Administration 

NEC = ECpl ×

{

(

1− fb,pl
)

×
1+ Kow× VFL,x

1+ Kow× VFL,pl

+ fb,pl ×
Px

Ppl

}
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2014). The maximal concentration (Cmax) and AUC at 
the toxic dose level (10 mg/kg/day) in rats was 10.8 ng/
ml and 34 h*ng/ml, respectively. The toxicokinetic param-
eters of abiraterone in humans were extracted from the 
study by (Goldberg and Berrios-Colon 2013); in this clini-
cal research, a daily oral dose of 1000 mg/kg, adminis-
tered as abiraterone acetate and bioactivated by hydrolysis 
to abiraterone, led to a Cmax of 226 ng/ml and an AUC 
at steady state of 1173 h*ng/ml. The average concentra-
tion (Cavg) was calculated from the ratio of AUC and the 
dose interval (τ) of 24 h. The percentage of plasma protein 
binding of the drug was reported as being 99.8 %, with-
out relevant species differences occurring (US FDA 2011). 
(c) The nominal in vitro concentrations equivalent to the 
concentration used in vivo were calculated using the value 
of total protein concentration instead of albumin concen-
tration. This approach was chosen because abiraterone 
shows extreme lipophilicity and extensive protein binding 
in vivo; this evidences lead to the assumption that in the 
absence of albumin and α1-acid glycoprotein in the test 
medium, abiraterone would bind to other present proteins 
(Fig. S2B).

In vitro–in vivo comparison of data for geldanamycin 
(GA)

(a) No developmental toxicity studies were found for GA 
in vivo, but different studies reported effects of this drug on 
neurodifferentiation. We used the study of (Sun et al. 2012) 
to define a dose that is acting on neurons in vivo. A GA 
dose of 0.2 mg/kg/day affected nerve recovery in a model 
based on Thy1-GFP transgenic rats, in which the green 
fluorescent protein GFP was expressed under the neuron-
specific promoter Thy1, allowing to determine the rate of 
axon regeneration after a nerve injury.

(b) Very few PK data are available for GA. The aque-
ous solubility of GA is poor, limiting the routes of admin-
istration to intravenous and intracerebroventricular. The 
i.v. PK of GA was studied in mice and dogs (Supko et al. 
1995). At the maximum tolerated dose, plasma levels rap-
idly declined to below-effective concentrations in both spe-
cies. Interspecies differences in PK in this study limit its 
usability to estimate rat PK. Based on the initial volume of 
distribution in mouse of 0.16 l/kg, the dose of 0.2 mg/kg 
(rat study) would lead to a Cmax of 1.25 mg/l. Supko el al 
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Fig. 2  Comparison of two viability assays. To validate the PI assay 
in the context of toxicity assessment, the cells were exposed to com-
pounds with varying concentrations where the viability of the cells 
was measured with PI and Alamar Blue assays. The correlation 
between the two viability assays, that included all compounds and all 

concentrations, was calculated using Pearson’s correlation. The corre-
lations for each individual data point were plotted, i.e., not the IC50s, 
but several concentrations for each compound. In addition a linear 
regression model was fit to the data where the gray box indicates the 
2 standard deviation of the residuals from the regression line
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(Supko et al. 1995) noted that the low distribution volume 
despite its lipophilicity suggests that the compound has a 
much greater affinity for plasma protein than for interaction 
with peripheral tissue. We assumed a fb,pl of 99 % since no 
more specific indications of plasma protein binding were 
found. (c) The nominal in vitro concentrations equivalent 
to the Cmax of 1.25 mg/l in rats were calculated assum-
ing GA binding only to the specific drug-binding proteins 
(albumin and/or α1-acid glycoprotein) (Fig. S2C).

In vitro–in vivo comparison of toxicity data 
for teriflunomide (TF)

(a) TF has been showed to lead to teratogenicity when 
administered to Sprague Dawley rats at an oral dose of 
0.3 mg/kg/day from gestational day (GD) 6 through lac-
tational day (LD) 20. Clinical signs included malrotated 
forepaws/hindpaws, discoloration of the body surface, 
impaired coat growth, eye opacity, and eye discharge with 
absence of pupillary reflex were observed (US FDA 2012). 
(b) Assuming the toxicokinetic parameters are proportional 
to reported kinetics at 1 mg/kg (US FDA 2012), Cmax and 

AUC at 0.3 mg/kg were estimated to be approximately 
3 μg/ml and 33 h*μg/ml, respectively. From the clini-
cal point of view, a daily oral dose of 14 mg led to a 24 h 
AUC at steady state of 1070 h*µg/ml in healthy individuals 
treated with TF (Australian Therapeutic Goods Administra-
tion 2013). The Cavg was calculated as the ratio of AUC 
and the dose interval (τ) of 24 h. TF is reported to be exten-
sively bound in plasma, probably mostly to albumin, with 
an average bound fraction of 99.46 % (Russo et al. 2013). 
(c) The nominal in vitro concentrations equivalent to the 
concentration used in vivo in rats and humans (Cmax and 
Cavg) were determined assuming only binding to the spe-
cific drug-binding proteins (albumin and/or α1-acid glyco-
protein) (Fig. S2D).

Results and discussion

Assay establishment

In this study, a high-throughput dual luminescence 
reporter assay was established. It compares the impact of 

Fig. 3  Effect of well-known 
non-neurotoxic and cytotoxic 
controls. Cells were exposed 
to compounds for 48 h; neural 
(Tα1; FLuc) and general (EF1α; 
RLuc) promoter activities 
and DNA quantity (PI assay) 
were determined. Results were 
expressed as percent of con-
trol + SD. Mean control values 
(100 %) are shown as dotted 
line; the SD of control values is 
shown as gray area. Data points 
that differ in a statistically 
significant manner from control 
values were determined by one-
way repeated-measures ANOVA 
followed by Dunnett’s post hoc 
test and are shown as filled cir-
cles. Data were obtained from 4 
to 6 replicates
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Fig. 4  Effect of HDAC 
inhibitors and organomercury 
compounds. Cells were exposed 
to compounds for 48 h; neural 
(Tα1; FLuc) and general (EF1α; 
RLuc) promoter activities 
and DNA quantity (PI assay) 
were determined. Results were 
expressed as percent of con-
trol + SD. Mean control values 
(100 %) are shown as dotted 
line; the SD of control values is 
shown as gray area. Data points 
that differ in a statistically 
significant manner from control 
values were determined by one-
way repeated-measures ANOVA 
followed by Dunnett’s post hoc 
test and are shown as filled cir-
cles. Data were obtained from 4 
to 8 replicates
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test compounds on undifferentiated pluripotent stem cells 
(ESCs) and ESC-derived neurons (Fig. 1). In both cell 
types activity of a neuron-specific promoter, tubulin α1 
(Tα1) and a general promoter, elongation factor 1α (EF1α) 
were determined. Moreover, total DNA content was ana-
lyzed by the PI assay as a measure of cell number. In con-
trast to the Alamar Blue method, a technique frequently 
applied in cytotoxicity testing, the PI assay can be easily 
integrated into the experimental procedure of the dual lumi-
nescence reporter test system. For validation of this new 
surrogate cytotoxicity endpoint (PI), we compared cyto-
toxicity data obtained by both assays, Alamar Blue and 
PI, using all test compounds later analyzed in this study. A 
high degree of correlation was found between cytotoxicity 
obtained by both assays (Fig. 2). Therefore, the PI assay 
was used in all further experiments. In a preliminary study, 
D-mannitol was tested as a negative control compound and 
compared to the cytotoxic drug doxorubicin. D-mannitol 
remained negative up to the highest tested concentration of 
50 µM for all three parameters analyzed in undifferentiated 
ESCs and neurons (Fig. 3a). Other non-neurotoxic controls, 
saccharin, ibuprofen, omeprazole, nicotinic acid, uric acid, 
and propranolol were studied and also yielded negative 
results (Fig. S3, Fig. S4). In contrast, doxorubicin strongly 
decreased the neuronal and general reporter activities, as 
well as the cell number (Fig. 3b).

Response profiles in vitro and the relationship to in vivo 
relevant concentrations

We next tested a set of 37 compounds to obtain an overview 
over concentration–response principles of the neuronal as 
well as the general promoter: 28 of the tested compounds 
belonged to the ESNATS test compound battery, includ-
ing clinically used drugs (e.g., teriflunomide, abiraterone), 
environmental pollutants (e.g., PCB, PBDE, arsenic), and 
biologics (e.g., interferon-β, oxytocin). Ten further com-
pounds were HDAC inhibitors (e.g., valproic acid, enti-
nostat) and organomercury compounds (e.g., methylmer-
cury, thimerosal). For some of these compounds, human 
data were available (Table 1) and could be used to group 
the compounds into three classes: strong, weak or absent 
neurotoxicity (Table S1).

In the dual luminescence reporter test system, all HDAC 
inhibitors showed cytotoxicity at their highest test concen-
trations as evidenced by the PI assay (Fig. 4, Fig. S5A, B). 
Cytotoxic effects in ESCs occurred at lower concentrations 
compared to neurons. At non-cytotoxic concentrations, 
HDAC inhibitors showed distinct effects. In undifferenti-
ated cells, valproic acid, belinostat, and entinostat enhanced 
the activities of neuronal and/or general promoters (Fig. 4a, 
b, Fig. S5B). In contrast, in neurons, all HDAC inhibitors 
showed inhibition of the neural promoter at non-cytotoxic 

concentrations. Two of the HDAC inhibitors had slightly 
deviating properties. Entinostat also enhanced general 
promoter activity in neurons (Fig. 4b), and panobinostat 
showed no enhancement of promoter activities under any 
condition (Fig. S5A). Among the inhibitors tested, panobi-
nostat had the most marked inhibitory effects, in particu-
lar in neurons where the neuronal promoter was inhibited 
at subnanomolar concentrations. Note that methoxyacetic 
acid is the major human metabolite of the environmental 
toxicant ethylene glycol monomethyl ether (EGME). It has 
been reported to also show some HDAC inhibitor activity 
(in the millimolar range). In accordance with this, it yielded 
only a very weak signal at the highest concentration 
(micromolar range) tested here (Fig. S6A). Taken together, 
a typical feature of HDAC inhibitors in our experimental 
system is their capacity to enhance promoter activities, typ-
ically at relatively low concentrations, which are presum-
ably of relevance for in vivo neurotoxicity. The increase 
in both reporter gene activities could not be ascribed to an 
increase in cell number, as demonstrated by PI assay, but is 
the result of an increased promoter activity.

Among the four HDAC inhibitors tested in this study, 
only valproic acid was a well-characterized human devel-
opmental neurotoxicant. The other HDAC inhibitors, which 
are structurally unrelated to valproic acid are drugs under 
development for cancer indications (Cheng et al. 2015; 
Foss et al. 2015; Ruiz et al. 2015). In our dual lumines-
cence reporter test system, the HDAC inhibitors shared 
similarities but also showed distinct features. Consistent 
with the role of histone acetylation in epigenetic regula-
tion (Stefanska and MacEwan 2015; Varela et al. 2013), all 
HDAC inhibitors led to some degree of enhanced reporter 
activity. However, distinct features were the preferential 
effects in either ESCs as compared to neurons. Moreover, 
some HDAC inhibitors preferentially activated either the 
Tα1 or the EF1α promoter. One common feature of several 
HDAC inhibitors is the inhibition of the Tα1 promoter in 
neurons at very low concentrations. Indeed, for valproic 
acid, statistically significant inhibition of Tα1-driven FLuc 
expression in neurons was already observed at a concentra-
tion of 50 µM. This concentration is of in vivo relevance, 
since human blood concentrations of valproic acid range 
between 500 and 1000 µM (Krug et al. 2013b). Previous 
studies have shown that valproic acid inhibits neural crest 
cell migration in the 10–100 μM range without affecting 
neuroepithelial precursor cell migration even at concentra-
tions of 1 mM (Zimmer et al. 2012). The results of valproic 
acid of the present study are in good agreement with previ-
ous studies performed in neuronal precursor cells derived 
from human embryonic stem cells (Waldmann et al. 
2014). In this study, three types of impacts related to dif-
ferent concentration ranges have been defined: (1) a range 
of tolerance, observed valproic acid concentrations up to 
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25 μM, suggesting the existence a threshold mechanisms 
(Dietrich et al. 2013); (2) a deregulated/teratogenic effect 
was observed at concentrations between 150 and 550 μM 
of valproic acid, which was associated with developmental 
disturbances, impaired cell migration, and the down-reg-
ulation of neuronal pathways (Balmer et al. 2012; Klaric 
et al. 2013); (3) a cytotoxic concentration range at 800 and 
1000 μM.

While valproic acid is known as a DNT compound, 
methylmercury represents a model compound that trig-
gers both developmental and adult neurotoxicity in humans 
and animals (Grandjean and Landrigan 2006; Kadereit 
et al. 2012). In the present study, four organomercury com-
pounds have been tested (phenyl-mercuric acetate, thimero-
sal, 4-chloromercuric benzoic acid, and mercury bromide) 
in addition to methylmercury chloride. All organomer-
cury compounds showed a very similar profile: a marked 
decrease in the three measured parameters, neural and gen-
eral promoter activities, and total DNA content, on both 
ESCs and ESC-derived neurons (Fig. 4c, d, Fig. S5C, D 
and Fig. S7A). However, mercury bromide had less effect 
on neurons, as compared to ESCs. Up to concentration 
of 5 µM, neurons were not affected by mercury bromide, 
while the compound appeared already highly cytotoxic on 
ESCs at this concentration (Fig. S5C). Strong differences 
in the toxicities of closely related mercurials are well docu-
mented in the literature (Lohren et al. 2015; Rempel et al. 
2015).

At first glance, it may seem surprising that the well-
known neurotoxicant methylmercury did not show a strong 
preferential neurotoxicity, as judged by comparison of its 
effects on the activity of the neural promoter vs the gen-
eral promoter; or on comparing the toxicity to neurons vs 
ESCs. However, as noticed previously by others (Silva-
Pereira et al. 2005; Suñol and Rodríguez-Farré 2012; van 
Vliet et al. 2008), the in vitro toxicity of methylmercury 
typically includes a strong cytotoxic component. Yet, meth-
ylmercury showed a statistically significant inhibition of 
Tα1 promoter activity in neurons already at 0.05 µM, while 
significant changes in the other parameters and in ESCs 
were observed only at higher concentrations in the range 
between 0.5 and 5 µM. It should also be noted that human 
relevant concentrations for methylmercury are in the range 
of 0.005–0.5 µM (Krug et al. 2013b). Thus, the influence of 
methylmercury on Tα1 promoter activity in neurons occurs 
at in vivo relevant concentrations and seems to represent an 
adequate marker of neurotoxicity.

Although the use of organomercury compounds such 
as fungicides was banned in the early 1970s (Westermark 
et al. 1975) and its use as an antimicrobial agent was sig-
nificantly decreased or banned in many countries, mer-
cury is currently employed as a preservative, thimerosal, 
in multi-dose vials of some vaccines, which are prescribed 

to pregnant mothers and infants (Dorea et al. 2013). It is 
metabolized to the cell-permeant ethylmercury in the 
human body and may therefore have neurotoxic effects 
through binding to intracellular targets. In our assay sys-
tem, statistically significant effects of thimerosal on the 
reporter genes in neurons were observed only at concen-
trations of 0.5 µM (Fig. 4d). In vivo, a small increase in 
blood mercury levels (<5 ng/ml, which is approximatively 
25 nM) after vaccination has been reported (Pichichero 
et al. 2008), which is well below the concentrations lead-
ing to statistically significant effects in our assay system. 
This fits well with the available epidemiological studies, 
which have rejected a causal relationship between thimer-
osal-containing vaccines and autism or neuropsychologi-
cal functioning (Hurley et al. 2010; Thompson et al. 2007). 
Indeed, a statement was issued by the WHO in 2006 that 
there is no scientific evidence in favor of a neurotoxic/
DNT effect of thimerosal in babies, children, or adults 
exposed to the compound by way of vaccination (http://
www.who.int/vaccine_safety/committee/topics/thiomersal/
statement_jul2006/en/).

The immunomodulatory drug teriflunomide is known for 
its teratogenicity without documented neurotoxicity. In our 
experiments, it had no effects on general promoter activity 
and/or on PI fluorescence. However, it caused an increase 
in neuronal promoter activity both in neurons and in ESCs. 
The increase of FLuc activity may reflect its ability to 
enhance neural differentiation. Alternatively, it may suggest 
that the compound interferes with epigenetic regulation, 
similarly as seen above for the HDAC inhibitors. While 
this enhancement of promoter activity was monophasic in 
ESCs, it was a biphasic curve with an upstroke between 
0.05 and 0.5 µM, followed by a downward deflection at a 
concentration of 50 µM in ESC-derived neurons (Fig. 5a). 
Thus, our results suggest that at very high concentrations 
(50 µM), teriflunomide may lead to neurotoxicity, while 
neurodevelopment may be affected at lower concentrations 
already.

Geldanamycin is a benzoquinone ansamycin antibiotic 
that inhibits the function of Hsp90 (Fukuyo et al. 2010). 
It is used as an experimental anticancer agent in animal 
experiments. Presently, there is no evidence for neurotox-
icity of the compound. However, several previous studies 
have reported in vitro cytotoxicity (Clark et al. 2009; Mle-
jnek and Dolezel 2014; Wu et al. 2010). In our study, the 
compound showed a considerable cytotoxicity on neurons 
and on ESCs. This cytotoxicity was already observed at 
concentrations of 0.05 µM (Fig. 5b). Thus, the main effect 
of geldanamycin in our experimental system is cytotoxic-
ity, and the impact on the reporter genes should be rather 
considered as secondary to this cytotoxicity. Interestingly, 
the LD50 of geldanamycin in mice is 1 mg/kg (https://

http://www.who.int/vaccine_safety/committee/topics/thiomersal/statement_jul2006/en/
http://www.who.int/vaccine_safety/committee/topics/thiomersal/statement_jul2006/en/
http://www.who.int/vaccine_safety/committee/topics/thiomersal/statement_jul2006/en/
https://www.spectrumchemical.com/MSDS/TCI-G0334.pdf
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Fig. 5  Representative examples 
of different classes of tested 
compounds. Cells were exposed 
to compounds for 48 h; neural 
(Tα1; FLuc) and general (EF1α; 
RLuc) promoter activities 
and DNA quantity (PI assay) 
were determined. Results were 
expressed as percent of con-
trol + SD. Mean control values 
(100 %) are shown as dotted 
line; the SD of control values is 
shown as gray area. Data points 
that differ in a statistically 
significant manner from control 
values were determined by one-
way repeated-measures ANOVA 
followed by Dunnett’s post hoc 
test and are shown as filled cir-
cles. Data were obtained from 4 
to 12 replicates
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www.spectrumchemical.com/MSDS/TCI-G0334.pdf), thus 
relatively low and in line with the observed cytotoxicity.

Abiraterone is an anti-androgenic drug for therapy of 
some metastatic cancers (Patel 2013) without known neu-
rotoxicity. Preclinical studies reported developmental tox-
icity in rats (Australian Therapeutic Goods Administration 
2014). In our assay system, abiraterone showed no cyto-
toxicity up to concentrations of 100 µM in the PI assay. In 
absence of changes in cell number, it induced a decrease 
of neuronal and general promoter activities in ESC-derived 
neurons (Fig. 5c) suggesting that at concentrations higher 
than 0.5 µM, this drug affects neural differentiation. The 
relationship of this concentration to clinically relevant 
ranges will be discussed below.

Amiodarone is a class III anti-arrhythmic drug gener-
ally prescribed for atrial fibrillation and ventricular arrhyth-
mias. The early published experience with amiodarone 
suggested that neurotoxic effects such as ataxia, periph-
eral neuropathy, and cognitive impairment/encephalopathy 
were frequent (Charness et al. 1984; Greene et al. 1983). 
However, clinically significant neurotoxic effects seem to 
be observed only at high concentrations, well above those 
achieved with presently used drug doses (Orr and Ahl-
skog 2009). In a previous study searching for neurotoxic 
and neuroactive compounds, we observed that amiodarone 
clustered with other potentially neurotoxic drugs; how-
ever, only a high concentration (10 µM) was tested (Kern 
et al. 2013). In this study, we found that the LOAEL of 
amiodarone in our experimental system was 5 µM (FLuc 
in neurons; Fig. S7C, Table 2). Concentrations of amiodar-
one in humans have been estimated in the range of 2–3 µM 
(Table 2). Thus, amiodarone provides an interesting exam-
ple of a potentially neurotoxic compound where achievable 
drug levels approach the neurotoxicity threshold.

The analyzed test compound panel includes also five 
environmental pollutants. For three of them, PBDE-99, 
PCB-153, and triadimefon, evidence of neurotoxicity is 
available. Indeed, the dual luminescence reporter assay 
identified all three compounds as potentially neurotoxic 
(Fig. 5d, Fig. S6B,C). PBDE-99 is a flame retardant con-
taining polybrominated diphenyl ethers (PBDEs). It easily 
leaches out from furniture for example, and residues have 
been identified in house dust and food (Frederiksen et al. 
2009), as well as in human blood, adipose and placental tis-
sues, and breast milk (Costa et al. 2008; Furst 2006; Pel-
lacani et al. 2014). Exposure to PBDEs has been associated 
with developmental neurotoxicity, endocrine dysfunction, 
and reproductive disorders (Costa et al. 2008; Darnerud 
2008; Eskenazi et al. 2013; Gascon et al. 2012). In our 
assay, PBDE-99 acted predominantly on neurons with 
moderate cell number decrease, but had a more marked 
effect on the general promoter activity (Fig. 5d). Human 

exposure concentrations are in the range of 5–100 pM 
(Zimmer et al. 2014), which is below the active concentra-
tions in the dual luminescence reporter assay seen in the 
present study. Future research should investigate whether 
long term exposure will lead to an in vitro toxicity signal 
at lower concentrations, or whether the effect of PBDE-
99 depends on co-exposure together with other congeners 
(Eskenazi et al. 2013; Gascon et al. 2012).

Triadimefon is largely used in agriculture as a pesti-
cide. Studies of acute effects in rodents have indicated 
a potential to induce neurobehavioral effects (Crofton 
1996; Reeves et al. 2004), and toxicity to the neural crest 
(Zimmer et al. 2012). To our knowledge, no evidence for 
human direct neurotoxicity is available. In the dual lumi-
nescence reporter assay, triadimefon caused only relatively 
weak responses (Fig. S6B) suggesting that it does not rank 
among the most critical compounds for murine central neu-
rons and ESCs at the tested concentrations. Polychlorinated 
biphenyls (PCBs) are food contaminants widely known for 
their potential carcinogenic and non-carcinogenic effects 
(http://www.epa.gov/epawaste/hazard/tsd/pcbs/pubs/
effects.htm). In particular, a link between prenatal and post-
natal exposure to PCBs and childhood cognitive function 
has been reported (Grandjean and Landrigan 2006; Jacob-
son and Jacobson 2001). In our study, the effects of PCB-
153 were limited to neurons where it decreased the neural 
and general promoter activities at the highest concentration 
(Fig. S6C) without affecting the number of cells.

Methoxyacetic acid is the active metabolite of the 
widely used industrial chemical ethylene glycol mono-
methyl ether (Henley and Korach 2010). This compound 
may have some developmental toxicity in humans (Welsch 
2005). In the dual luminescence reporter assay, methoxy-
acetic acid showed only a relatively weak signal. At con-
centrations of 50 µM, an approximately 40 % inhibition of 
neuronal promoter activity was seen in neurons, whereas an 
increase of neural promoter activity was obtained in ESCs 
(Fig. S6A). Given the relatively high blood concentrations 
of methoxyacetic acid estimated in humans exposed to the 
compound (Welsch 2005), our results showing statistically 
significant effects on the neural promoter at 50 µM should 
be considered as a positive signal.

The antifungal agent cyproconazole is a triazole like tri-
adimefon. It is most likely devoid of neurotoxicity (http://
www.fao.org/fileadmin/templates/agphome/documents/
Pests_Pesticides/JMPR/Report10/Cyproconazole.pdf) and 
did not give a signal in our assay system (Fig. S6D).

We also analyzed the effects of five polypeptides: eryth-
ropoietin, neuregulin, G-CSF, IFN-β and oxytocin, testing 
concentrations in the range of reported in vivo concentra-
tions (Table 2). Oxytocin did not have any effects in the 
dual luminescence reporter assay (Fig. S8A). In contrast, 
the four other compounds selectively increased general 

https://www.spectrumchemical.com/MSDS/TCI-G0334.pdf
http://www.epa.gov/epawaste/hazard/tsd/pcbs/pubs/effects.htm
http://www.epa.gov/epawaste/hazard/tsd/pcbs/pubs/effects.htm
http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/Report10/Cyproconazole.pdf
http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/Report10/Cyproconazole.pdf
http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/Report10/Cyproconazole.pdf
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A 4-chloromercuric benzoic acid

B abiraterone

C aliskiren

D amiodarone

F belinostat

G chlorpromazine

H cyproconazole

I doxorubicin

J entinostat

K erythropoietin

L exenatide

M G-CSF

N galnon

O gefitinib

P geldanamycin

Q ibuprofen

R IFN-beta

S imatinib

T mannitol

U mercury bromide

V methoxyacetic acid

W methyl mercury

X neuregulin

Y nicotinic acid

Z nintedanib

a omeprazole

b oxytocin

c panobinostat

d PBDE-99

e PCB-153

f phenylmercuric acetate

g propranolol

h rivaroxaban

i saccharin

j sildenafil

k sitagliptin

l sulfadiazine

m telaprevir

n teriflunomide

o thimerosal

p triadimefon

r uric acid

s valproic acid

E arsenic trioxide

q trimethyltin chloride
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promoter activity in neurons (Fig. S8B,C,D and Fig. S9D). 
Also, the compounds did not affect ESCs. This is reminis-
cent of previous observations studying neurogenic polypep-
tides whose simultaneous activation of the neural and the 
general promoter has been described as a signature profile 
for growth factor-like activity (Xu et al. 2014). The absence 
of signs of neurotoxicity (i.e., decreased reporter activity) 
for these polypeptides seems plausible, given their essential 
role for neuronal development during embryogenesis and 
to neuronal function in the adult brain (Laske et al. 2009; 
Roysommuti et al. 2003).

Changes induced by all tested compounds on the three 
analyzed parameters in ESCs and in neurons are sum-
marized in Table 2. The numbers given in column 3-8 
correspond to the lowest observed adverse effect level 
(LOAEL), i.e., the lowest tested concentrations that caused 
a statistically significant decrease in a given parameter. 
Column 9 gives information about known concentrations 
that were found in humans. Column 10 gives the number 
of parameters changed for a given compound. The high-
est possible number is 4, corresponding to the promoter 
activities of the two different promoters in two cell types 
(ESCs and neurons). A change of reporter activity in the 
non-cytotoxic range, as scored here, was defined as a sta-
tistically significant decrease in reporter activity without a 
corresponding change in PI values. Non-neurotoxic con-
trols generally had no impact on our test systems with the 
exception of propranolol that caused some minor changes 

B 

Data mining to identify in vivo DNT concentrations or therapeutic plasma 
concentrations (ECpl) 

Extrapolation of pharmacokinetic parameters from published studies to 
calculate free plasma concentrations 

Calculation of the nominal medium concentrations EC equivalent to the 
concentrations found in vivo, by using the equation: 

A 

(a) 

(b) 

(c) 

Source/ type of   
in vivo data 

Nominal in vitro concentration 
corresponding to in vivo

concentration [µM] 
In vitro EC20 [µM] in: 

Compound Species  Type of 
measurement   BHK medium  N2 medium  ESC ESC-derived 

neurons 
Abiraterone Rat  Cmax  0.0022 0.0004 2 0.7 
Abiraterone Rat  Cavg  0.0003 0.00005 2 0.7 
Abiraterone Human Cmax  0.0407 0.007 2 0.7 
Abiraterone Human Cavg  0.0088 0.0015 2 0.7 

Geldanamycin  Rat  Cmax  0.198 0.0089 0.01 0.001 
Teriflunomide  Rat  Cmax  0.972 0.0256 4 - 40 10 - 20 

Teriflunomide  Rat  Cavg  0.445 0.0117 4 - 40 10 - 20 

Teriflunomide  Human Cmax  0.101 0.28 4 - 40 10 - 20 

Fig. 7  Reverse modeling of relevant in vivo plasma concentrations 
for comparison with toxic in vitro concentrations. a Outline of the 
workflow to determine the nominal effective concentration (NEC) 
in cell culture media. b Synopsis of NEC for the two media used in 
the study and the corresponding in vitro toxicity data (expressed as 
EC20) for selected compounds. NEC in embryonic pluripotent stem 
cells (ESCs) were compared to predicted concentrations in BHK 
medium; NEC in neurons were compared to predicted concentrations 

in N2 medium. Fields marked in green show effects in a similar con-
centration range (within factor 10) in in vitro tests (here) and in vivo 
data (literature). Abbreviations. NEC nominal effective concentration, 
fb,pl plasma bound fraction, Kow octanol:water partition coefficient, 
VFL volume fractions of lipids, P albumin concentration (or total 
protein concentration); suffix “pl” plasma; suffix “x” type of medium 
used in this study (color figure online)

Fig. 6  Direct comparison of LOAELs in alert plots. a–f A scatterplot 
of log10 transformed lowest adverse effect levels (LOAEL). g The 
box plot displays the distribution of distances perpendicular to the 
diagonal for the comparison of endpoint sensitivity of compounds. 
Distances of points below the diagonal are shown as negative values. 
Data are as in a–f

◂
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at highest concentrations. An interesting exception to the 
rule that Tα1 promoter is most sensitive to neurotoxic 
insult is the impact of trimethyltin. Indeed, in neurons, the 
EF1α promoter LOAEL was at 50 nM, as compared to a 
LOAEL of 5 µM for Tα1 and PI. This demonstrates that 
for some type of toxicants the perturbance of cellular gene 
expression by a well-defined neurotoxicant is more read-
ily detected by a general promoter driving protein transla-
tion (EF1α), than by the promoter driving expression of a 
neural-specific gene (Tα1). It clearly provides a justifica-
tion for our dual promoter approach. Note also that in the 
analysis provided in this table increases in promoter activ-
ity were not included. Although these increases might be 
of interest for understanding mechanisms of activity of cer-
tain compounds, they did not seem to improve detection of 
neurotoxicants.

Alert plots of neurotoxicity

To obtain an overview over the effects induced by the test 
compounds, the lowest observed adverse effect concen-
trations (LOAEL) affecting the activities of the neuronal 
(FLuc) and general (RLuc) promoter were summarized 
in alert plots (Fig. 6). Alert plots were established sepa-
rately for ESCs (Fig. 6a, b) and the derived neuronal cells 
(Fig. 6c, d). Analysis of ESCs resulted in a high correla-
tion of FLuc and RLuc with data points close to the diago-
nal, indicating similar responses of the neuronal and the 
general promoter activities (Fig. 6a). A different scenario 
was obtained in the alert plot of the ESC-derived neuronal 
cells, where several compounds clustered to the upper left 
of the diagonal (Fig. 6c), indicating that these compounds 
affect the neuronal promoter at lower concentrations than 
the general promoter. Interestingly, well-known neuro-
toxicants as well as DNT compounds cluster in the upper 
left region, such as valproic acid and other HDAC inhibi-
tors, and also methylmercury. Therefore, clustering of an 
unknown test compound to this region should be consid-
ered as a neurotoxic alert that requires further assessment. 
It is also of interest that for many compounds, toxicity 
was evident in neurons differentiated from ESCs, but not 
in non-differentiated ESCs. In a similar way, alert plots 
were set for FLuc and PI to study the relationship between 
neuronal promoter activation and cytotoxicity (Fig. 6b, d). 
Clustering to the upper left in these plots means that neu-
ronal promoter inhibition occurs at lower concentrations 
than cytotoxicity. A direct comparison between LOAELs 
in ESCs and the derived neuronal cells was analyzed for 
PI (Fig. 6f) and FLuc (Fig. 6e). For PI, the measure of 
cytotoxicity, relatively similar results were obtained for 
both ESCs and neurons (Fig. 6f). In contrast, the responses 
for the neural promoter activity cluster to the lower right, 
indicating a higher sensitivity for neuronal cells compared 

to ESCs (Fig. 6e). Again, this increase in susceptibility of 
neuronal cells compared to their precursor cells was par-
ticularly pronounced for HDAC inhibitors. These alert 
plots of LOAELs obtained by the dual luminescence 
reporter assay will be helpful to obtain an overview of 
possible neurotoxic alerts of novel test compounds, espe-
cially since their scattering positions can now be compared 
to those of a number of positive and negative reference 
compounds.

Finally, an interesting feature of the here established 
dual fluorescence reporter assay is that compounds cannot 
only lead to a decrease in reporter gene expression, but also 
to an increase, or to biphasic curves where an increase is 
followed by a decrease. This was particularly evident for 
HDAC inhibitors, as well as for teriflunomide. Bimodal 
curves were obtained in ESCs, but a decrease of reporter 
activities was observed in neurons. To see whether these 
patterns of reporter gene expression were linked to known 
neurotoxicity, we analyzed the type of curve that was 
observed in different groups of compounds (Fig. S14). All 
tested clinically used compounds did not cause any positive 
effects in the dual luminescence reporter assay at concen-
trations known to occur in the blood of patients.

PBPK modeling of hit compounds

To compare the effective/toxic concentrations found in 
our study with relevant in vivo concentrations, we used 
a reverse pharmacokinetic modeling approach for three 
exemplary compounds: teriflunomide, geldanamycin, 
and abiraterone. Firstly, we used a literature data mining 
approach to identify toxic or clinically relevant plasma con-
centrations reported in published animal studies (in rela-
tion to developmental toxicity or neurotoxicity) or clinical 
measurements (mostly in relation to drug efficacy). Then 
those values were used as points-of-departure to calculate 
the nominal equivalent concentrations (NEC) in both cell 
culture media used in our study, the BHK and N2 medium. 
These two media (used to expose the ESCs and the ESC-
derived neurons) contained different amounts of protein 
and lipid and therefore required separate calculations of 
the NEC. The strategy to calculate the NEC was based 
on the assumption that only the free fraction of the drug 
(not bound to protein or lipid) is responsible for toxicity or 
pharmacological efficacy. Thus, free concentrations should 
be compared across systems, and for this it was important 
to calculate the NEC that would yield the same free con-
centration. This mathematical background is best exem-
plified by an example: if a drug D has clinical effects at a 
plasma concentration of 5 µM, and the free fraction is 10 % 
in human plasma, then experimental test systems should 
show an effect at a free drug concentration of 0.5 µM, if 
they react in the same way as humans. The NEC is the 
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nominal concentration in a given test system that produces 
this free drug concentration. For instance, in test system A, 
there may be no protein or lipid in the medium. In this case, 
the NEC would be equal to the free concentration, i.e., 
0.5 µM. In test system B, the free drug concentration may 
be only 1 % (due to high protein content). In this system, 
the NEC would be 50 µM (to obtain a free concentration 
of 0.5 µM). Accordingly, the different NEC were calculated 
for the two test systems (media) used here (Fig. 7a). For 
the calculation of the NEC, the parameters of lipid content 
(VFL) and albumin concentration (P) (or total protein con-
centration) were determined for each model from the lit-
erature or supplier data sheet information (Fig. S2A). The 
compound-specific values of plasma bound fraction and 
octanol:water partition coefficient were extracted from the 
literature to allow NEC calculation.

After the determination of the NEC, the next step of our 
strategy was to compare the NEC with the NOAEL for tox-
icity in our test systems. This procedure, and the conclu-
sions therefrom, is detailed for the three model compounds 
below.

Abiraterone: a developmental toxicity study performed 
in rats by the Australian regulatory body for therapeutic 
goods, TGA (TGA 2014) and data from clinical measure-
ments on the pharmacokinetics of abiraterone in healthy 
subjects (Goldberg and Berrios-Colon 2013) were used to 
identify relevant drug plasma concentrations. The average 
concentrations (Cavg) were calculated from the maximal 
concentration (Cmax), based on published pharmacoki-
netics studies. The NEC equation was finally applied as 
described in Materials and methods. The NEC of abirater-
one in N2 medium was 0.05–0.4 nM when modeled from 
the rat DNT exposure, and 1.5–7 nM when human expo-
sure data were used. The NEC in BHK medium (ECy) was 
0.3–2.2 nM (for DT dose exposure) and 8.8–41 nM when 
calculated using the clinical dose. The LOAEL of abira-
terone was 0.7–2 µM in neurons/ESCs. Comparison of the 
LOAEL and NEC shows a difference of 50–100 fold, and 
thus suggests that the clinical drug concentrations are far 
below the one causing effects in our in vitro test. Moreover, 
the effects observed in the rat developmental toxicity study 
occurred at lower concentration than the ones required to 
affect neurodifferentiation in our neuronal model (Fig. 7b, 
Fig. S13).

Geldanamycin: Data on the developmental toxicity of 
geldanamycin in vivo were not found, but effects on neu-
rodifferentiation were observed in rats by Sun et al. (2012) 
at a dose of 0.2 mg/kg/day. Extrapolation of pharmacoki-
netics data from Supko et al. (Supko et al. 1995) allowed 
then the calculation of the Cmax and of the respective 
NEC.

The NEC of geldanamycin was 8.9 nM in N2 medium 
and 198 nM in BHK medium when modeled from the rat 

study described by Sun et al. (2012). In our in vitro system, 
geldanamycin showed an EC20 of 1–10 nM. The effects of 
geldanamycin in our in vitro model thus closely reflected 
the in vivo concentration range (Fig. 7b, Fig. S13).

Finally, we compared the in vitro-in vivo toxicity/
clinical data for teriflunomide. The developmental toxic-
ity dose of the immunomodulatory drug was extrapolated 
from an in vivo study on the effect of teriflunomide on the 
offspring of drug-exposed rats (FDA 2012). Clinical phar-
macokinetics information was extracted from a study on 
healthy individuals treated with the drug (TGA 2013). The 
NEC of teriflunomide in N2 medium was 12–26 nM when 
calculated from the rat data, and 280 nM when clinical 
plasma level data were used. The NEC of teriflunomide in 
BHK medium was 445–970 nM (for DT dose exposure) 
and 100 nM when calculated using the clinical doses. In 
our system, teriflunomide showed various effects in a con-
centration range of 4–40 µM. The NOAEL of terifluno-
mide in ESCs was in the same range (i.e., same order of 
magnitude) as the in vivo data, while the neuronal system 
was less sensitive to the drug (35 fold) (Fig. 7b, Fig. S13). 
These three examples indicated that NOAELs identified 
here may either be directly clinically relevant, be partially 
relevant (to create an alert), or be outside the realistic 
clinical range, and may therefore be neglected.

Conclusion

In this study, a tool to identify test compounds with poten-
tial neurotoxic effects has been established. This high-
throughput dual luminescence reporter assay provides a 
biologically relevant, embryonic stem cell-based testing 
system, which is particularly useful for the screening of 
high numbers of test compounds.
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